
IBM SDK, Java Technology Edition
Version 6

AIX User Guide

IBM

IBM SDK, Java Technology Edition
Version 6

AIX User Guide

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 139.

Copyright information

This edition of the user guide applies to the IBM SDK, Java Technology Edition, Version 6, for all supported 64-bit
AIX architectures, and to all subsequent releases, modifications, and service refreshes, until otherwise indicated in
new editions.

The platforms this guide applies to are:
v IBM 64-bit SDK for AIX, Java Technology Edition, Version 6

v IBM 64-bit Runtime Environment for AIX, Java Technology Edition, Version 6

Portions © Copyright 1997, 2016, Oracle and/or its affiliates.

© Copyright IBM Corporation 2003, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Chapter 1. Overview 1
Version compatibility 1
Migrating from earlier IBM SDK or JREs 1
Supported environments 2
Additional information for AIX 3

Chapter 2. Contents of the SDK and
Runtime Environment 5
Contents of the Runtime Environment 5
Contents of the SDK 6

Chapter 3. Installing and configuring the
SDK and Runtime Environment 9
Installing from an InstallAnywhere package . . . 10

Completing an attended installation 10
Completing an unattended installation 11
Interrupted installation 12
Known issues and limitations 12

Relocating an installp package 13
Upgrading the SDK 13
Verification 14
Setting the path 14
Setting the class path 15
Updating your SDK or JRE for Daylight Saving
Time changes 15

Chapter 4. Running Java applications 17
The java and javaw commands 17

Obtaining version information 17
Specifying Java options and system properties. . 18
Standard options 19
Globalization of the java command 20

Working with the LIBPATH environment variable . . 21
Working with the LDR_CNTRL environment variable 21
The Just-In-Time (JIT) compiler 22

Disabling the JIT 23
Enabling the JIT 23
Determining whether the JIT is enabled 23

Specifying a garbage collection policy 24
Garbage collection options 24
More effective heap usage using compressed
references 25
Pause time 25
Pause time reduction 26
Environments with very full heaps 26

Dynamic Logical Partitioning (DLPAR) support . . 27
Live application mobility on AIX WPAR. 28
Using the IPv6 extensions 28
Enhanced BiDirectional support 28
Euro symbol support 29
Using Indian and Thai input methods 29
Scaling support 29

System resource limits and the ulimit command . . 30
AIX Stack Execution Disable. 31

Chapter 5. Developing Java
applications 33
Using XML 33

Migrating to the XL-TXE-J 35
Securing Java API for XML processing (JAXP)
against malformed input 37
XML reference information 37

Debugging Java applications. 42
Java Debugger (JDB) 43
Selective debugging 43

Determining whether your application is running on
a 32-bit or 64-bit JVM 44
Determining which JVM version your application is
running on 44
How the JVM processes signals. 45

Signals used by the JVM 45
Linking a native code driver to the
signal-chaining library 47

Writing JNI applications 48
Supported compilers 48
JNI compatibility 48
JNI runtime linking. 49
Example of using AIX shared libraries 52

Support for thread-level recovery of blocked
connectors 53
Configuring large page memory allocation 53
CORBA support 54

System properties for tracing the ORB 55
System properties for tuning the ORB 56
Java security permissions for the ORB 56
ORB implementation classes 57

RMI over IIOP 57
Implementing the Connection Handler Pool for RMI 58
Enhanced BigDecimal 58
AIX native threads 58
JNDI 58
Support for XToolkit 59
Support for the Java Attach API 59

Chapter 6. Plug-in, Applet Viewer and
Web Start 63
Using the Java plug-in. 63

Supported browsers 63
Installing the Java plug-in 63
Changing the properties of the Java Plug-in . . 64
Common Document Object Model (DOM)
support. 64
Using DBCS parameters 64

Working with applets 64
Running and debugging applets with the Applet
Viewer 64
Java Applet Viewer and the classpath. 65

© Copyright IBM Corp. 2003, 2016 iii

|
||

|
||

Using Web Start 65
Running Web Start 66
WebStart Secure Static Versioning 67

Distributing Java applications 67

Chapter 7. Class data sharing between
JVMs 69
Overview of class data sharing 69
Class data sharing command-line options 71
Creating, populating, monitoring, and deleting a
cache 75
Performance and memory consumption 76
Considerations and limitations of using class data
sharing 77

Cache size limits. 77
JVMTI RetransformClasses() is unsupported . . 77
Runtime bytecode modification 77
Operating system limitations 78
Using SharedClassPermission 78

Adapting custom class loaders to share classes . . 79

Chapter 8. Service and support for
independent software vendors 81

Chapter 9. Accessibility 83
Keyboard traversal of JComboBox components in
Swing 83

Web Start accessibility 83

Appendix. Appendixes 85
Command-line options 85

Specifying command-line options 85
General command-line options 86
System property command-line options 87
JVM command-line options 98
JVM -XX command-line options 113
JIT and AOT command-line options 114
Garbage Collector command-line options . . . 118

Default settings for the JVM 128
Known issues and limitations 130
Support for virtualization software 138

Notices 139
Trademarks 141
Terms and conditions for product documentation 141
IBM Online Privacy Statement. 142

iv IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Preface

This guide provides general information about the IBM® SDK, Java™ Technology
Edition, Version 6, for all supported 64-bit AIX® architectures. The guide gives
specific information about any differences in the IBM implementation compared
with the Oracle implementation.

Read this information in conjunction with the documentation on the Oracle Web
site: http://www.oracle.com/technetwork/java/index.html.

Late breaking information about this release that is not available in the guide can
be found here: http://www.ibm.com/support/docview.wss?uid=swg21587401.

Useful Web sites include:
v The Java technologies download site for AIX.
v IBM home page for Java technologies.

The Diagnostics Guide provides more detailed information about the IBM Virtual
Machine for Java.

The terms Runtime Environment and Java Virtual Machine are used interchangeably
throughout this guide.

This guide is part of a release and is applicable only to that particular release.
Make sure that you have the guide appropriate to the release you are using.

For Service Refresh 9 and earlier
The guide is available in the code package. Technical changes made for a
version of the user guide are indicated by blue chevrons.

For Service Refresh 10 and later
The guide is available online. Any modifications made to this user guide to
support a later service refresh are indicated by graphic images, for
example: In this image, SR11 indicates that changes are made for
Service Refresh 11. End of changes are marked by

The guide is also available for download as a PDF. Technical changes made
for this version are indicated by vertical bars at the beginning of the line.

To determine the service refresh or fix pack level of an installed version, see
“Obtaining version information” on page 17.

The Program Code is not designed or intended for use in real-time applications
such as (but not limited to) the online control of aircraft, air traffic, aircraft
navigation, or aircraft communications; or in the design, construction, operation, or
maintenance of any nuclear facility.

© Copyright IBM Corp. 2003, 2016 v

http://www.oracle.com/technetwork/java/index.html
http://www.ibm.com/support/docview.wss?uid=swg21587401
http://www.ibm.com/developerworks/java/jdk/aix/
http://www.ibm.com/java/

vi IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 1. Overview

The IBM SDK is a development environment for writing and running applets and
applications that conform to the Java 6 Core Application Program Interface (API).

Version compatibility
In general, any applet or application that ran with a previous version of the SDK
should run correctly with this release. Classes that are compiled with this release
are not guaranteed to work on previous releases.

For information about compatibility issues between releases, see the Oracle Web
site at:

http://www.oracle.com/technetwork/java/javase/compatibility-137541.html

http://www.oracle.com/technetwork/java/javase/compatibility-137462.html

http://www.oracle.com/technetwork/java/javase/compatibility-j2se1-141394.html

http://www.oracle.com/technetwork/java/javase/compatibility-135119.html

If you are using the SDK as part of another product (for example, IBM WebSphere®

Application Server), and you upgrade from a previous level of the SDK, perhaps
v5.0, serialized classes might not be compatible. However, classes are compatible
between service refreshes.

Migrating from earlier IBM SDK or JREs
From Version 5.0, the IBM Runtime Environment for AIX contains new versions of
the IBM Virtual Machine for Java and the Just-In-Time (JIT) compiler.

If you are migrating from an older IBM Runtime Environment, note that:
v The XL TXE-J compiler replaces the XSLT4J interpreter as the default XSLT

processor. If you are migrating applications from older versions of Java, see
“Migrating to the XL-TXE-J” on page 35.

v The JVM shared library libjvm.so is now stored in jre/lib/ppc64/j9vm and
jre/lib/ppc64/classic.

v From Version 5.0 onwards, the JVM Monitoring Interface (JVMMI) is no longer
available. You must rewrite JVMMI applications to use the JVM Tool Interface
(JVMTI) instead. The JVMTI is not functionally the equivalent of JVMMI. For
information about JVMTI, see http://docs.oracle.com/javase/6/docs/technotes/
guides/jvmti/ and the Diagnostics Guide.

v From Version 5.0 onwards, the implementation of JNI conforms to the JNI
specification, but differs from the Version 1.4.2 implementation. It returns copies
of objects rather than pinning the objects. This difference can expose errors in
JNI application code. For information about debugging JNI code, see
-Xcheck:jni in “JVM command-line options” on page 98.

v From Version 5.0 onwards, the format and content of garbage collector verbose
logs obtained using -verbose:gc have changed. The data is now formatted as
XML. The data content reflects the changes to the implementation of garbage

© Copyright IBM Corp. 2003, 2016 1

http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://www.oracle.com/technetwork/java/javase/compatibility-137462.html
http://www.oracle.com/technetwork/java/javase/compatibility-j2se1-141394.html
http://www.oracle.com/technetwork/java/javase/compatibility-135119.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/

collection in the JVM, and most of the statistics that are output have changed.
You must change any programs that process the verbose GC output so that they
will work with the new format and data. See the Diagnostics Guide for an
example of the new verbose GC data.

v SDK 1.4 versions of the IBM JRE included JVM specific classes in a file called
core.jar. From Version 5.0 onwards, these are included in a file called vm.jar.

v From Version 6, JVM classes are held in multiple JAR files in the jre/lib
directory. This replaces the single rt.jar and core.jar from earlier releases.

v For additional industry compatibility information, see Oracle's Java 6
Compatibility Documentation: http://www.oracle.com/technetwork/java/
javase/compatibility-137541.html

v For additional deprecated API information, see Oracle's Java 6 Deprecated API
List: http://docs.oracle.com/javase/6/docs/api/deprecated-list.html

v Tracing class dependencies, started using -verbose:Xclassdep, is not supported.
If you specify -verbose:Xclassdep, the JVM will issue an error message and will
not start.

v The JVM detects the operating system locale and sets the language preferences
accordingly. For example, if the locale is set to fr_FR, JVM messages will be
printed in French. To avoid seeing JVM messages in the language of the detected
locale, remove the file $SDK/jre/bin/java_xx.properties where xx is the locale,
such as fr, and the JVM will print messages in English.

v The currency symbol code for Zambia is now corrected to the value “ZMW”.

Many new features and capabilities, which might present planning considerations,
can be found here: Summary of changes.

Supported environments
This release is supported on certain hardware platforms and operating systems,
and is tested on specific virtualization environments.

Hardware platform

This release runs on hardware that supports the IBM POWER® architecture. For
specific information about IBM POWER 7 support, see https://www.ibm.com/
developerworks/java/jdk/power7/index.html.

The release also runs on older System p systems that have a Common Hardware
Reference Platform (CHRP) architecture. To test whether the release is supported
on a specific System p system, at the system prompt type:
lscfg -p | fgrep Architecture

The output for a supported platform reads:
Model Architecture: chrp

Operating system

The following table shows the latest operating system level tested for each
platform architecture. The table indicates whether support for an operating system
release was included at the “general availability” (GA) date for the release, or at a
later date in a service refresh (SR) or fix pack (FP):

2 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://docs.oracle.com/javase/6/docs/api/deprecated-list.html
https://www.ibm.com/developerworks/java/jdk/power7/index.html
https://www.ibm.com/developerworks/java/jdk/power7/index.html

Table 1. Supported Operating System levels

Operating system Release supported Comments

AIX 5.3.0.30 GA

AIX 6.1.0.0 GA

AIX 7.1.0.0 SR9

AIX 7.2 SR16 FP15

Note: AIX V7.2 is supported only on IBM Power® 7 and later processors.

The latest service details and resources can be found here:http://www.ibm.com/
developerworks/java/jdk/aix/service.html.

Virtualization software

For information about the virtualization software tested, see “Support for
virtualization software” on page 138.

Additional information for AIX
Important information for this release on AIX platforms and architectures.

AIX APARs required for this release

To avoid problems when using Java, ensure that you have any prerequisite AIX
APARs installed. For further information about the APARs needed for an AIX
level, see http://www.ibm.com/support/docview.wss?uid=swg21605167.

Environment variables

The environment variable LDR_CNTRL=MAXDATA is not supported for 64-bit processes.
Use LDR_CNTRL=MAXDATA only on 32-bit processes.

Use of non-UTF8 CJK locales

If you are using one of the supported non-UTF8 CJK locales, you must install one
of these file sets.
X11.fnt.ucs.ttf (for ja_JP or Ja_JP)
X11.fnt.ucs.ttf_CN (for zh_CN or Zh_CN)
X11.fnt.ucs.ttf_KR (for ko_KR)
X11.fnt.ucs.ttf_TW (for zh_TW or Zh_TW)

Note: The installation images are available on the AIX base CDs. Updates are
available from the AIX fix distribution website.

When using the zh_TW.IBM-eucTW locale on 64-bit AIX 6.1, you might get a result
that uses ISO-8859-1 instead of IBM-eucTW, in response to the following command:
$ LANG=zh_TW locale charmap

If you encounter this effect, see APAR https://www-304.ibm.com/support/
docview.wss?uid=isg1IV05072.

Chapter 1. Overview 3

http://www.ibm.com/developerworks/java/jdk/aix/service.html
http://www.ibm.com/developerworks/java/jdk/aix/service.html
http://www.ibm.com/support/docview.wss?uid=swg21605167
http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html
https://www-304.ibm.com/support/docview.wss?uid=isg1IV05072
https://www-304.ibm.com/support/docview.wss?uid=isg1IV05072

4 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 2. Contents of the SDK and Runtime Environment

The SDK contains several development tools and a Java Runtime Environment
(JRE). This section describes the contents of the SDK tools and the Runtime
Environment.

Applications written entirely in Java must have no dependencies on the IBM SDK's
directory structure (or files in those directories). Any dependency on the SDK's
directory structure (or the files in those directories) might result in application
portability problems.

The documentation package is designed to be extracted into the SDK software
installation directory. If you download the compressed version, be sure to preserve
the path names when you extract the files from the archive.

Contents of the Runtime Environment
A list of classes, tools, and other files that you can use with the standard Runtime
Environment.
v Core Classes - These classes are the compiled class files for the platform and

must remain compressed for the compiler and interpreter to access them. Do not
modify these classes; instead, create subclasses and override where you need to.

v Trusted root certificates from certificate signing authorities - These certificates are
used to validate the identity of signed material. The IBM Runtime Environment
for Java contains an expired GTE CyberTrust Certificate for compatibility
reasons. This certificate might be removed for later versions of the SDK. See
“Expired GTE Cybertrust Certificate” on page 134 for more information.

v JRE tools - The following tools are part of the Runtime Environment and are in
the /usr/java6_64/jre/bin directory unless otherwise specified.

ControlPanel (Java Control Panel)
Configures your Runtime Environment.

ikeycmd (iKeyman command-line utility)
Allows you to manage keys, certificates, and certificate requests from the
command line. For more information see the accompanying Security
documentation, which includes the iKeyman User Guide.

ikeyman (iKeyman GUI utility)
Allows you to manage keys, certificates, and certificate requests. For more
information see the accompanying Security documentation, which includes
the iKeyman User Guide. There is also a command-line version of this utility.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in the
Java programming language.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does not
use a console window.

javaws (Java Web Start)
Enables the deployment and automatic maintenance of Java applications. For
more information, see “Running Web Start” on page 66.

© Copyright IBM Corp. 2003, 2016 5

jcontrol (Java Control Panel)
Configures your Runtime Environment.

jextract (Dump extractor)
Converts a system-produced dump into a common format that can be used
by jdmpview. For more information, see jdmpview.

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

kinit
Obtains and caches Kerberos ticket-granting tickets.

klist
Displays entries in the local credentials cache and key table.

ktab
Manages the principal names and service keys stored in a local key table.

pack200
Transforms a JAR file into a compressed pack200 file using the Java gzip
compressor.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define your
installation's Java security policy.

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

unpack200
Transforms a packed file produced by pack200 into a JAR file.

Contents of the SDK
A list of tools and reference information that is included with the standard SDK.

The following tools are part of the SDK and are located in the
/usr/java6_64/bin directory:

appletviewer (Java Applet Viewer)
Tests and runs applets outside a Web browser.

apt (Annotation Processing Tool)
Finds and executes annotation processors based on the annotations present
in the set of specified source files being examined.

extcheck (Extcheck utility)
Detects version conflicts between a target jar file and currently-installed
extension jar files.

HtmlConverter (Java Plug-in HTML Converter)
Converts an HTML page that contains applets to a format that can use the
Java Plug-in.

6 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

idlj (IDL to Java Compiler)
Generates Java bindings from a given IDL file.

jar (Java Archive Tool)
Combines multiple files into a single Java Archive (JAR) file.

jarsigner (JAR Signing and Verification Tool)
Generates signatures for JAR files and verifies the signatures of signed JAR
files.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in
the Java programming language.

javac (Java Compiler)
Compiles programs that are written in the Java programming language
into bytecodes (compiled Java code).

javadoc (Java Documentation Generator)
Generates HTML pages of API documentation from Java source files.

javah (C Header and Stub File Generator)
Enables you to associate native methods with code written in the Java
programming language.

javap (Class File Disassembler)
Disassembles compiled files and can print a representation of the
bytecodes.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does
not use a console window.

javaws (Java Web Start)
Enables the deployment and automatic maintenance of Java applications.
For more information, see “Running Web Start” on page 66.

jconsole (JConsole Monitoring and Management Tool)
Monitors local and remote JVMs using a GUI. JMX-compliant.

jdb (Java Debugger)
Helps debug your Java programs.

jdmpview (Cross-platform dump formatter)
Analyzes dumps. For more information, see "Using system dumps and the
dump viewer" in the diagnostic guide.

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

native2ascii (Native-To-ASCII Converter)
Converts a native encoding file to an ASCII file that contains characters
encoded in either Latin-1 or Unicode, or both.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define
your installation's Java security policy.

rmic (Java Remote Method Invocation (RMI) Stub Converter)
Generates stubs, skeletons, and ties for remote objects. Includes RMI over
Internet Inter-ORB Protocol (RMI-IIOP) support.

Chapter 2. Contents of the SDK and Runtime Environment 7

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

schemagen
Creates a schema file for each namespace referenced in your Java classes.

serialver (Serial Version Command)
Returns the serialVersionUID for one or more classes in a format that is
suitable for copying into an evolving class.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

wsgen
Generates JAX-WS portable artifacts used in JAX-WS Web services.

wsimport
Generates JAX-WS portable artifacts from a Web Services Description
Language (WSDL) file.

xjc
Compiles XML Schema files.

Include Files
C headers for JNI programs.

User Guide
This file.

copyright
The copyright notice for the SDK for AIX software.

License

The License file, /sdk/docs/content/<locale>/license_<locale>.txt, contains the
license agreement for the SDK for AIX software (where <locale> is the name of
your locale, for example en). To view or print the license agreement, open the
file in a Web browser.

8 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 3. Installing and configuring the SDK and Runtime
Environment

You can install the SDK and Runtime Environment from an InstallAnywhere
package, or from installp packages.

InstallAnywhere packages

The InstallAnywhere packages are archive packages. Use these packages when you
want to install the product files without any configuration. For more information,
see “Installing from an InstallAnywhere package” on page 10. Packages are
provided for both the JRE and SDK.

installp packages

Use these packages when you want to install the product with associated
configuration, such as the setting of environment variables. Only SDK packages are
provided.

This package is required:
v Java6_64.sdk (license, base SDK and dt.jar)

These packages are optional:
v Java6_64.samples (demos)
v Java6_64.source (src.jar)
v Java6_64.msg.$LANG (Localized messages)

$LANG is one of the following locales. These packages do not include any files but
pull in required Unicode TrueType fonts, if not already installed, for these locales:
v Zh_CN
v zh_CN
v ko_KR
v Ja_JP
v ja_JP
v Zh_TW
v zh_TW

The SDK is installed in the directory:
/usr/java6_64/

The following user-configurable files are installed to /etc/java6_64/ to support a
configuration where the files are not shared:
v jre/lib/jaxp.properties

v jre/lib/logging.properties

v jre/lib/management/jmxremote.access

v jre/lib/management/jmxremote.password.template

v jre/lib/management/management.properties

v jre/lib/management/snmp.acl

© Copyright IBM Corp. 2003, 2016 9

v jre/lib/management/snmp.acl.template

v jre/lib/security/java.policy

v jre/lib/security/java.security

v jre/lib/xalan.properties

v jre/lib/xerces.properties

There are symbolic links in /usr/java6_64/ pointing to the files in /etc/java6_64/.

Installing from an InstallAnywhere package
These packages provide an interactive program that guides you through the
installation options. You can run the program as a graphical user interface, or from
a system console.

About this task

The InstallAnywhere packages have a .bin file extension.

Procedure
v To install the package in an interactive way, complete an attended installation.
v To install the package without any additional user interaction, complete an

unattended installation. You might choose this option if you want to install
many systems.

Results

The product is installed.

Note: Do not interrupt the installation process, for example by pressing Ctrl+C. If
you interrupt the process, you might have to reinstall the product. For more
information, see “Interrupted installation” on page 12.

Completing an attended installation
Install the product from an InstallAnywhere package, in an interactive way.

Before you begin

Check the following conditions before you begin the installation process:
v You must have a user ID with root authority.

Procedure
1. Download the installation package file to a temporary directory.
2. Change to the temporary directory.
3. Start the installation process by typing ./package.bin at a shell prompt, where

package is the name of the package that you are installing.
4. To read the installation instructions in another language, select a language from

the list that is shown in the installer window, then click Next. The list of
available languages is based on the locale setting for your system.

5. Read the license agreement. To proceed with the installation, you must accept
the terms of the license agreement. To accept the terms, read to the end of the
license text by using the scroll bar. Select the radio button, then click OK.

10 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

6. You are asked to choose the target directory for the installation. If you do not
want to install into the default directory, click Choose to select an alternative
directory, by using the browser window. When you have chosen the installation
directory, click Next to continue.

7. You are asked to review the choices that you made. To change your selection,
click Previous. If your choices are correct, click Install to proceed with
installation.

8. When the installation process is complete, click Done to finish.

Completing an unattended installation
If you have more than one system to install, and you already know the installation
options that you want to use, you might want to use the unattended installation
process. The unattended process uses a response file to complete installations
without any user interaction.

Before you begin

Check the conditions that are documented in “Completing an attended
installation” on page 10.

About this task

Before you use the unattended installation process, you must accept the terms of
the license agreement. You can do this by running an attended installation to
generate a new response file that sets a specific value, or by reading the license
agreement and manually updating an existing response file. More information is
provided in the first step.

Procedure
1. To create a new response file, complete an attended installation. Use one of the

following options:
v Use the GUI and specify that the installation program creates a response file.

The response file is called installer.properties, and is created in the
installation directory.

v Use the command line and append the -r option to the attended installation
command, specifying the full path to the response file. For example:
./package -r /path/installer.properties

Example response file contents:
INSTALLER_UI=silent
USER_INSTALL_DIR=/my_directory
LICENSE_ACCEPTED=TRUE

In this example, /my_directory is the target installation directory that you
chose for the IBM SDK or IBM JRE.

Note: The value LICENSE_ACCEPTED=TRUE is added when you create the
response file by running an attended installation and accepting the license
agreement. If you edit an existing response file, you must read the license
agreement and include this line to confirm your license acceptance, or the
installation fails.

2. Optional: If required, edit the response file to change options.

Chapter 3. Installing and configuring the SDK and Runtime Environment 11

|
|
|
|
|

Note: The packages have the following known issue: installations that use a
response file use the default directory even if you change the directory in the
response file. If a previous installation exists in the default directory, it is
overwritten.
If you are creating more than one response file, each with different installation
options, specify a unique name for each response file, in the format
myfile.properties.

3. Optional: Generate a log file. Because you are installing silently, no status
messages are displayed at the end of the installation process. To generate a log
file that contains the status of the installation, complete the following steps:
a. Set the required system properties by using the following command.

export _JAVA_OPTIONS="-Dlax.debug.level=3 -Dlax.debug.all=true"

b. Set the following environment variable to send the log output to the
console.
export LAX_DEBUG=1

4. Start an unattended installation by running the package installer with the -i
silent option, and the -f option to specify the response file. For example:
./package -i silent -f /path/installer.properties 1>console.txt 2>&1

./package -i silent -f /path/myfile.properties 1>console.txt 2>&1

You can use a fully qualified path or relative path to the properties file. In these
examples, the string 1>console.txt 2>&1 redirects installation process
information from the stderr and stdout streams to the console.txt log file in
the current directory. Review this log file if you think there was a problem with
the installation.

Note: If your installation directory contains multiple response files, the default
response file, installer.properties is used.

Interrupted installation
If the package installer is unexpectedly stopped during installation, for example if
you press Ctrl+C, the installation is corrupted and you cannot uninstall or reinstall
the product. If you try to uninstall or reinstall you might see the message Fatal
Application Error.

About this task

To solve this problem, delete files and reinstall, as described in the following steps.

Procedure
1. Delete the \var\.com.zerog.registry.xml registry file.
2. Delete the directory containing the IBM SDK or IBM JRE installation, if it was

created. For example /usr/java6_64/.
3. Run the installation program again.

Known issues and limitations
The InstallAnywhere packages have some known issues and limitations.
v The installation package GUI does not support the Orca screen-reading program.

You can use the unattended installation mode as an alternative to the GUI.
v If you install the package, then attempt to install again in a different mode, for

example console or silent, you might see the following error message:

12 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Invocation of this Java Application has caused an InvocationTargetException.
This application will now exit

You should not see this message if you installed by using the GUI mode and are
running the installation program again in console mode.

v If you change the installation directory in a response file, and then run an
unattended installation by using that response file, the installation program
ignores the new installation directory and uses the default directory instead. If a
previous installation exists in the default directory, it is overwritten.

Relocating an installp package
By default, the SDK is installed in /usr/java6_64/. To install the SDK in another
directory, use the AIX relocation commands.

Delete any .toc files in the directory containing your installp images or PTFs
before using the AIX relocation commands.

Commands

See the AIX man pages for more information about the command-line options for
these commands.

installp_r
Install the SDK:
installp_r -a -Y -R /<Install Path>/ -d ’.’ Java6_64.sdk

Remove the SDK:
installp_r -u -R /<Install Path>/ Java6_64.sdk

lsusil List the user-defined installation paths.
lsusil

lslpp_r
Find details of installed products.
lslpp_r -R /<Install Path>/ -S [A|O]

rmusil Remove existing user-defined installation paths.
rmusil -R /<Install Path>/

Upgrading the SDK
If you are upgrading the SDK from a previous release, back up all the
configuration files and security policy files before you start the upgrade.

What to do next

After the upgrade, you might have to restore or reconfigure these files because
they might have been overwritten during the upgrade process. Check the syntax of
the new files before restoring the original files because the format or options for
the files might have changed.

Chapter 3. Installing and configuring the SDK and Runtime Environment 13

Verification
Before you begin

To help ensure that the verification process behaves consistently, first enter the
following commands:
unset LIBPATH
unset CLASSPATH
unset JAVA_COMPILER
export PATH=/usr/java6_64/jre/bin:/usr/java6_64/bin:$PATH

About this task

When you issue the command:
java -version

you see output like the following messages:
java version "1.6.0-internal" Java(TM) SE Runtime Environment (build 20070405_01)
IBM J9 VM (build 2.4, J2RE 1.6.0 IBM J9 2.4 AIX ppc64-64 jvmap6460-20070326_12091
(JIT enabled) J9VM - 20070326_12091_bHdSMr JIT - dev_20070326_1800 GC -
20070319_AA)

where dates, times, and specific build numbers might be different.

What to do next

When verification is complete, log on again and review for possible conflicts
arising from values that you assigned to these variables.

Setting the path
If you alter the PATH environment variable, you will override any existing Java
launchers in your path.

About this task

The PATH environment variable enables AIX to find programs and utilities, such as
javac, java, and javadoc tool, from any current directory. To display the current
value of your PATH, type the following command at a command prompt:
echo $PATH

To add the Java launchers to your path:
1. Edit the shell startup file in your home directory (typically .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable; for
example:
export PATH=/usr/java6_64/bin:/usr/java6_64/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH
environment variable.

Results

After setting the path, you can run a tool by typing its name at a command
prompt from any directory. For example, to compile the file Myfile.Java, at a
command prompt, type:
javac Myfile.Java

14 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Setting the class path
The class path tells the SDK tools, such as java, javac, and the javadoc tool, where
to find the Java class libraries.

About this task

You should set the class path explicitly only if:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH environment variable, type the
following command at a shell prompt:

echo $CLASSPATH

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set the
CLASSPATH and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own shell prompt.

Updating your SDK or JRE for Daylight Saving Time changes
You can apply recent changes to Daylight Saving Time by using the IBM Time
Zone Update Utility for Java (JTZU).

About this task

Many countries around the world use a Daylight Saving Time (DST) convention.
Typically, clocks move forward by 1 hour during the summer months to create
more daylight hours during the afternoon and less during the morning. This
practice has many implications, including the need to adjust system clocks in
computer systems. Occasionally, countries change their DST start and end dates.
These changes can affect the date and time functions in applications because the
original start and end dates are programmed into the operating system and in Java
software. To avoid this problem, you must update operating systems and Java
installations with the new DST information.

The Olson time zone database is an external resource that compiles information
about the time zones around the world. This database establishes standard names
for time zones, such as "America/New_York", and provides regular updates to
time zone information that can be used as reference data. To ensure that IBM
developer kits and Runtime Environments contain up to date DST information,
IBM incorporates the latest Olson time zone level into every updated release. To
find out which Olson time zone level is included for a particular SDK or Runtime
level, see https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html.

If a DST change has been introduced since the last IBM update of the SDK or
Runtime Environment, you can use JTZU to directly update your Java installation.
You can also use this tool to update your installation if you are unable to move
straight to the latest SDK or Runtime level. JTZU is available from IBM

Chapter 3. Installing and configuring the SDK and Runtime Environment 15

https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html

developerWorks® at the following link: https://www.ibm.com/developerworks/
java/jdk/dst/jtzu.html.

Results

After updating your Java installation with any recent DST changes, your
application can handle time and date calculations correctly.

16 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html
https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html

Chapter 4. Running Java applications

Java applications can be started using the java launcher or through JNI. Settings
are passed to a Java application using command-line arguments, environment
variables, and properties files.

The java and javaw commands
An overview of the java and javaw commands.

Purpose

The java and javaw tools start a Java application by starting a Java Runtime
Environment and loading a specified class.

The javaw command is identical to java, except that javaw has no associated
console window. Use javaw when you do not want a command prompt window to
be displayed. The javaw launcher displays a window with error information if it
fails.

Usage

The JVM searches for the initial class (and other classes that are used) in three sets
of locations: the bootstrap class path, the installed extensions, and the user class
path. The arguments that you specify after the class name or .jar file name are
passed to the main function.

The java and javaw commands have the following syntax:
java [options] <class> [arguments ...]
java [options] -jar <file.jar> [arguments ...]
javaw [options] <class> [arguments ...]
javaw [options] -jar <file.jar> [arguments ...]

Parameters

[options]
Command-line options to be passed to the runtime environment.

<class>
Startup class. The class must contain a main() method.

<file.jar>
Name of the .jar file to start. It is used only with the -jar option. The named
.jar file must contain class and resource files for the application, with the
startup class indicated by the Main-Class manifest header.

[arguments ...]
Command-line arguments to be passed to the main() function of the startup
class.

Obtaining version information
You obtain the IBM build and version number for your Java installation by using
the -version or -fullversion options. You can also obtain version information for
all jar files on the class path by using the -Xjarversion option.

© Copyright IBM Corp. 2003, 2016 17

Procedure
1. Open a shell prompt.
2. Type the following command:

java -version

You will see information similar to:
java version "1.6.0"
Java(TM) SE Runtime Environment (build pap6460sr10-20111027_02(SR10))
IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 AIX ppc64-64 jvmap6460sr10-20111026_93491 (JIT enabled,
AOT enabled)
J9VM - 20111026_093491
JIT - r9_20111021_21134
GC - 20110519_AA)
JCL - 20111025_01

The output provides the following information:
v The first line indicates the Java standard edition class library level.
v The second line includes information about the build level of the runtime

environment. Service refresh (SR), fix pack (FP), and APAR numbers are
appended to the build string. In the example, the installed level is service
refresh 10.

v The third line indicates the build level of the IBM J9 virtual machine.
v Subsequent lines provide detailed information about the levels of IBM

components that make up the runtime environment.

Exact build dates and versions will change.
3. To obtain only the build information for the runtime environment, type the

following command:
java -fullversion

You will see information similar to:
java full version "JRE 1.6.0 IBM Windows 32 build pwi3260sr11-20120412_01 (SR11)"

What to do next

You can also list the version information for all available jar files on the class path,
the boot class path, and in the extensions directory. Type the following command:
java -Xjarversion

You will see information similar to:
...
/usr/java6_64/jre/lib/ext/ibmpkcs11impl.jar VERSION: 1.0 build_20070125
/usr/java6_64/jre/lib/ext/dtfjview.jar
/usr/java6_64/jre/lib/ext/xmlencfw.jar VERSION: 1.00, 20061011 LEVEL: -20061011

...

The information available varies for each jar file and is taken from the
Implementation-Version and Build-Level properties in the manifest of the jar file.

To query the Java version information programmatically, see “Determining which
JVM version your application is running on” on page 44.

Specifying Java options and system properties
You can specify Java options and system properties directly on the command line.
You can also use an options file or an environment variable.

18 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|

About this task

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use one of more of the options that are shown in the procedure to customize your
runtime environment.

Procedure
1. Specify options or system properties on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. Create an environment variable that is called IBM_JAVA_OPTIONS containing the
options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait
-Xdisablejavadump"

3. Create a file that contains the options, and specify that file on the command
line or in the IBM_JAVA_OPTIONS environment variable by using the
-Xoptionsfile parameter. For more information about constructing this file, see
“-Xoptionsfile” on page 105.

Standard options
The definitions for the standard options.

See “JVM command-line options” on page 98 for information about nonstandard
(-X) options.

-agentlib:<libname>[=<options>]
Loads a native agent library <libname>; for example -agentlib:hprof. For more
information, specify -agentlib:jdwp=help and -agentlib:hprof=help on the
command line.

-agentpath:libname[=<options>]
Loads a native agent library by full path name.

-cp <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-D<property name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Load a Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Include user private JREs in the version search.

Chapter 4. Running Java applications 19

-no-jre-restrict-search
Exclude user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. The
available options are:

class
Writes an entry to stderr for each class that is loaded.

gc Writes verbose garbage collection information to stderr. Use
-Xverbosegclog (see “Garbage Collector command-line options” on page
118 for more information) to control the output. See Verbose garbage
collection logging for more information.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for each
thread.

-version
Prints product version.

-version:<value>
Requires the specified version to run, for example “1.5”.

-X Prints help on nonstandard options.

Globalization of the java command
The java and javaw launchers accept arguments and class names containing any
character that is in the character set of the current locale. You can also specify any
Unicode character in the class name and arguments by using Java escape
sequences.

To do this, use the -Xargencoding command-line option.

-Xargencoding
Use argument encoding. To specify a Unicode character, use escape sequences
in the form \u####, where # is a hexadecimal digit (0 to 9, A to F).

-Xargencoding:utf8
Use UTF8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

For example, to specify a class called HelloWorld using Unicode encoding for both
capital letters, use this command:
java -Xargencoding ’\u0048ello\u0057orld’

The java and javaw commands provide translated messages. These messages differ
based on the locale in which Java is running. The detailed error descriptions and
other debug information that is returned by java is in English.

20 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Working with the LIBPATH environment variable
The LIBPATH environment variable tells AIX applications, such as the JVM, where
to find shared libraries when they are located in a different directory from the
directory that is specified in the header section of the program.

For example, the header section of the java command is as follows:
> dump -X64 -H install_dir/jre/bin/java
install_dir/jre/bin/java:

Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000003f 0x0000006d 0x00000090

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000006 0x00000b24 0x00000099 0x00000bb4

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib:/lib

1 libc.a shr.o
2 libC.a shr.o
3 libpthreads.a shr_comm.o
4 libpthreads.a shr_xpg5.o
5 libbsd.a shr.o

Index 0 in the example contains the list of directories that are searched for shared
objects if LIBPATH is not specified. If LIBPATH is set, the specified directories are
searched for shared objects before the directories listed in Index 0 of the header.

The shared libraries for the SDK are in lib_dir and lib_dir/j9vm. The SDK
launcher programs, including java, javac, and jar automatically search these
directories. If Java is installed as an AIX file set, the parent directory is
install_dir, but packages that bundle Java might use different directories. This
path is already set by the Java launcher programs such as java, javac, or jar.

Set the LIBPATH if either of the following conditions applies:
v You are using other shared libraries (including JNI native libraries you use or

develop). Set the LIBPATH to include the directory or directories that contain your
libraries.

v You are using the JNI Invocation API to call Java code from your C/C++
application. Set the LIBPATH to include the directories that contain the JVM
libraries in addition to the directories that contain your own libraries.

Working with the LDR_CNTRL environment variable
The POWER4 and later PowerPC® processors support the use of 16 MB large pages
in addition to the default 4 KB pages. The POWER5+ and later PowerPC
processors add support for two new page sizes, 64 KB and 16 GB.

Page sizes

AIX v5.2 and later operating systems support 16 MB pages. AIX v5.3 maintenance
package 5300-04 on POWER5+ processors adds support for the 64 KB and 16 GB
page sizes. The 16 MB and 16 GB pages require AIX system configuration changes.

Chapter 4. Running Java applications 21

For information about using 16 MB pages with AIX, see Large pages in the AIX
product documentation. For information about using either 64 KB or 16 GB pages
with AIX, see Multiple page size support in the AIX product documentation. The
default AIX page size is 4 KB.

The LDR_CNTRL=LARGE_PAGE_DATA environment variable can be used under the AIX
v5.2 and later operating systems to control the use of 16 MB pages for the native
data area and native heap of a program. You can use 16 MB large pages, if they are
available, by setting LDR_CNTRL=LARGE_PAGE_DATA=Y. Using large pages might
improve the performance of Java applications that require a large amount of native
heap space. In particular, the native heap is used for code generated by the
just-in-time compiler and also Java applications with many compiled methods. The
reason is that both might benefit from using 16 MB pages for the native heap.

AIX v5.3 maintenance package 5300-04 added LDR_CNTRL variants that
independently control the use of different page sizes for the text (TEXTPSIZE), stack
(STACKPSIZE) and native data or heap (DATAPSIZE) areas. See the Guide to Multiple
Page Size Support on AIX 5L™ Version 5.3 for general information about these
variants: Multiple page size support.

An example of the use of TEXTPSIZE, STACKPSIZE, and DATAPSIZE variants is:
LDR_CNTRL=TEXTPSIZE=4K@STACKPSIZE=64K@DATAPSIZE=64K

This example uses 4 KB pages for text, 64 KB pages for stack and 64 KB pages for
the native data and native heap areas. A DATAPSIZE setting overrides any
LARGE_PAGE_DATA setting.

The new 64 KB pages are general purpose. Most workloads see a benefit by using
64 KB pages for text, stack, native data, and the Java heap. The 16 GB pages are
intended only for use in high performance environments.

Note: Use the -Xlp option variants to request that the JVM allocates the Java heap
with a specific size of pages.

The Just-In-Time (JIT) compiler
The IBM Just-In-Time (JIT) compiler dynamically generates machine code for
frequently used bytecode sequences in Java applications and applets during their
execution. The JIT compiler delivers new optimizations as a result of compiler
research, improves optimizations implemented in previous versions of the JIT, and
provides better hardware exploitation.

The JIT is included in both the IBM SDK and Runtime Environment, which is
enabled by default in user applications and SDK tools. Typically, you do not start
the JIT explicitly; the compilation of Java bytecode to machine code occurs
transparently. You can disable the JIT to help isolate a problem. If a problem occurs
when executing a Java application or an applet, you can disable the JIT to help
isolate the problem. Disabling the JIT is a temporary measure only; the JIT is
required to optimize performance.

The Stack Execution Disable (SED) feature in the AIX 5300-03 Recommended
Maintenance package stops code from executing in data areas (Power4 and later).
For more information about this feature and how it affects the SDK, see “AIX Stack
Execution Disable” on page 31.

For more information about the JIT, see .

22 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm

Disabling the JIT
The JIT can be disabled in a number of different ways. Both command-line options
override the JAVA_COMPILER environment variable.

About this task

Turning off the JIT is a temporary measure that can help isolate problems when
debugging Java applications.

Procedure
v Set the JAVA_COMPILER environment variable to NONE or the empty string before

running the java application. Type the following command at a shell prompt:
export JAVA_COMPILER=NONE

v Use the -D option on the JVM command line to set the java.compiler property
to NONE or the empty string. Type the following command at a shell prompt:
java -Djava.compiler=NONE <class>

v Use the -Xint option on the JVM command line. Type the following command
at a shell prompt:
java -Xint <class>

Enabling the JIT
The JIT is enabled by default. You can explicitly enable the JIT in a number of
different ways. Both command-line options override the JAVA_COMPILER
environment variable.

Procedure
v Set the JAVA_COMPILER environment variable to jitc before running the Java

application. At a shell prompt, enter:
export JAVA_COMPILER=jitc

If the JAVA_COMPILER environment variable is an empty string, the JIT remains
disabled. To disable the environment variable, at the prompt, enter:
unset JAVA_COMPILER

v Use the -D option on the JVM command line to set the java.compiler property
to jitc. At a prompt, enter:
java -Djava.compiler=jitc <class>

v Use the -Xjit option on the JVM command line. Do not specify the -Xint option
at the same time. At a prompt, enter:
java -Xjit <class>

Determining whether the JIT is enabled
You can determine the status of the JIT using the -version option.

Procedure

Run the java launcher with the -version option. Enter the following command at
a shell prompt:
java -version

If the JIT is not in use, a message is displayed that includes the following text:
(JIT disabled)

Chapter 4. Running Java applications 23

If the JIT is in use, a message is displayed that includes the following text:
(JIT enabled)

What to do next

For more information about the JIT, see The JIT compiler.

Specifying a garbage collection policy
The Garbage Collector manages the memory used by Java and by applications
running in the JVM.

When the Garbage Collector receives a request for storage, unused memory in the
heap is set aside in a process called "allocation". The Garbage Collector also checks
for areas of memory that are no longer referenced, and releases them for reuse.
This is known as "collection".

The collection phase can be triggered by a memory allocation fault, which occurs
when no space remains for a storage request, or by an explicit System.gc() call.

Garbage collection can significantly affect application performance, so the IBM
virtual machine provides various methods of optimizing the way garbage
collection is carried out, potentially reducing the effect on your application.

For more detailed information about garbage collection, see .

Garbage collection options
The -Xgcpolicy options control the behavior of the Garbage Collector. They make
trade-offs between throughput of the application and overall system, and the pause
times that are caused by garbage collection.

The format of the option is as follows:
-Xgcpolicy:<value>

The following values are available:

gencon
The generational concurrent (gencon) policy uses a concurrent mark phase
combined with generational garbage collection to help minimize the time that
is spent in any garbage collection pause. This policy is particularly useful for
applications with many short-lived objects, such as transactional applications.
Pause times can be significantly shorter than with the optthruput policy, while
still producing good throughput. Heap fragmentation is also reduced.

optavgpause
The "optimize for pause time" (optavgpause) policy uses concurrent mark and
concurrent sweep phases. Pause times are shorter than with optthruput, but
application throughput is reduced because some garbage collection work is
taking place while the application is running. Consider using this policy if you
have a large heap size (available on 64-bit platforms), because this policy limits
the effect of increasing heap size on the length of the garbage collection pause.
However, if your application uses many short-lived objects, the gencon policy
might produce better performance.

subpool
The subpool policy disables the concurrent mark phase, but employs an
improved object allocation algorithm to achieve better performance when

24 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

allocating objects on the heap. This algorithm is more suitable for multiple
processor systems, commonly 16 processors or more. Applications that must
scale on large systems might benefit from this policy. This policy is available
on AIX, Linux PPC and zSeries, z/OS®, and i5/OS™ only.

optthruput
The "optimize for throughput" (optthruput) policy (default) disables the
concurrent mark phase. The application stops during global garbage collection,
so long pauses can occur. This configuration is typically used for large-heap
applications when high application throughput, rather than short garbage
collection pauses, is the main performance goal. If your application cannot
tolerate long garbage collection pauses, consider using another policy, such as
gencon.

More effective heap usage using compressed references
Many Java application workloads depend on the Java heap size. The IBM SDK can
use compressed references on 64-bit platforms to decrease the size of Java objects
and make more effective use of the available space. The result is less frequent
garbage collection and improved memory cache utilization.

If you specify the -Xnocompressedrefs command-line option, the 64-bit Java virtual
machine (VM) stores object references as 64-bit values. If you specify the
-Xcompressedrefs command-line option, object references are stored as 32-bit
representation, which reduces the 64-bit object size to be the same as a 32-bit
object.

As the 64-bit objects with compressed references are smaller than default 64-bit
objects, they occupy a smaller memory footprint in the Java heap. This results in
improved data locality, memory utilization, and performance. You might consider
using compressed references if your application uses a lot of native memory and
you want the VM to run in a small footprint.

If you are using a 64-bit IBM SDK, you can use -Xcompressedrefs whenever you
require a maximum heap size up to 25 GB. Larger heap sizes might result in an
out of memory condition at runtime because the VM requires some memory at low
addresses.

See Compressed references for more detailed information and hardware/operating
system specific guidance on compressed references. More information is also
available in the Websphere white paper on compressed references.

Pause time
If an object cannot be created from the available space in the heap, the Garbage
Collector attempts to tidy the heap. The intention is that subsequent allocation
requests can be satisfied quickly.

The Garbage Collector tries to returning the heap to a state in which the immediate
and subsequent space requests are successful. The Garbage Collector identifies
unreferenced “garbage” objects, and deletes them. This work takes place in a
garbage collection cycle. These cycles might introduce occasional, unexpected
pauses in the execution of application code. As applications grow in size and
complexity, and heaps become correspondingly larger, the garbage collection pause
time tends to grow in size and significance. Pause time can vary from a few
milliseconds to many seconds. The actual time depends on the size of the heap,
and the quantity of garbage.

Chapter 4. Running Java applications 25

ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf

The subpool option of -Xgcpolicy provides additional throughput optimization for
large SMP systems (24- to 64-way).

Pause time reduction
The JVM uses two techniques to reduce pause times: concurrent garbage collection
and generational garbage collection.

The -Xgcpolicy:optavgpause command-line option requests the use of concurrent
garbage collection (GC) to reduce significantly the time that is spent in garbage
collection pauses. Concurrent GC reduces the pause time by performing some
garbage collection activities concurrently with normal program execution to
minimize the disruption caused by the collection of the heap. The
-Xgcpolicy:optavgpause option also limits the effect of increasing the heap size on
the length of the garbage collection pause. The -Xgcpolicy:optavgpause option is
most useful for configurations that have large heaps. With the reduced pause time,
you might experience some reduction of throughput to your applications.

During concurrent GC, a significant amount of time is wasted identifying relatively
long-lasting objects that cannot then be collected. If garbage collection concentrates
on only the objects that are most likely to be recyclable, you can further reduce
pause times for some applications. Generational GC reduces pause times by
dividing the heap into two generations: the “new” and the “tenure” areas. Objects
are placed in one of these areas depending on their age. The new area is the
smaller of the two and contains new objects; the tenure is larger and contains older
objects. Objects are first allocated to the new area; if they have active references for
long enough, they are promoted to the tenure area.

Generational GC depends on most objects not lasting long. Generational GC
reduces pause times by concentrating the effort to reclaim storage on the new area
because it has the most recyclable space. Rather than occasional but lengthy pause
times to collect the entire heap, the new area is collected more frequently and, if
the new area is small enough, pause times are comparatively short. However,
generational GC has the drawback that, over time, the tenure area might become
full. To minimize the pause time when this situation occurs, use a combination of
concurrent GC and generational GC. The -Xgcpolicy:gencon option requests the
combined use of concurrent and generational GC to help minimize the time that is
spent in any garbage collection pause.

Environments with very full heaps
If the Java heap becomes nearly full, and very little garbage can be reclaimed,
requests for new objects might not be satisfied quickly because no space is
immediately available.

If the heap is operated at near-full capacity, application performance might suffer
regardless of which garbage collection options are used; and, if requests for more
heap space continue to be made, the application might receive an
OutOfMemoryError, which results in JVM termination if the exception is not
caught and handled. At this point, the JVM produces a Javadump file for use
during diagnostic procedures. In these conditions, you are recommended either to
increase the heap size by using the -Xmx option or to reduce the number of objects
in use.

For more information, see .

26 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Dynamic Logical Partitioning (DLPAR) support
System resources, for instance memory and CPUs, can be dynamically added to or
removed from a logical partition (LPAR) running AIX. Java applications can take
advantage of any new resources. Java applications can also respond to DLPAR
events using extensions to the java.lang.management API.

If you run Java applications on a single CPU LPAR and never dynamically add a
CPU to that LPAR while those Java applications are running, you can improve the
performance by exporting the environment variable: export
NO_LPAR_RECONFIGURATION=1. The results vary depending on the execution
characteristics of your application. Do not export this environment variable unless
all the following conditions are true:
v You are running in an LPAR
v The LPAR has 1 CPU
v The LPAR will never be dynamically reconfigured to add more CPUs while Java

applications are running.

Resource changes are effective immediately, so AIX does not need to be rebooted.
If an administrator decreases the number of CPUs or memory allocated to an
LPAR, the performance of any running SDK application might degrade.

For more information, see Dynamic logical partitioning in the AIX product
documentation, and the article: Dynamic reconfiguration: Basic building blocks for
autonomic computing on IBM pSeries servers in the following IBM Systems Journal
issue: http://www.research.ibm.com/journal/sj42-1.html.

To enable applications to respond to DLPAR events, the SDK includes IBM-specific
extensions to java.lang.management. The extensions provide a Java interface to
query various LPAR-specific information, and to listen for events indicating that
the logical partition of the JVM has been dynamically altered. The API
documentation for this package is available here: API documentation

The launcher option, -Xsoftmx, is also available with the SDK. The –Xmx option
specifies the maximum size (hard limit) of the Java heap. The –Xsoftmx option
specifies a smaller initial maximum heap size (a "soft" limit). You can change the
value of -Xsoftmx at run time using the java.lang.management API. The valid
range of values is between the minimum heap size (-Xms) and the hard limit
(-Xmx).

For example, if the JVM is running in an LPAR with 2 GB of memory available for
the heap, but the amount of memory might be changed to as low as 1 GB or as
high as 8 GB during the run, a suitable set of command-line options might be:
–Xms1g –Xsoftmx2g –Xmx8g

The value of –Xms must be less than or equal the value of -Xsoftmx. If unspecified,
-Xsoftmx defaults to the value of -Xmx.
Related information:
Virtualize this: Using Java API to exploit virtualization capabilities of the IBM

POWER5 hardware
This developerWorks article describes the use of the java.lang.management API to
respond to DLPAR events.

Chapter 4. Running Java applications 27

http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.prftungd/doc/prftungd/dyn_log_part.htm
http://www.research.ibm.com/journal/sj42-1.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.api.60.doc/api_overview.dita
http://www.ibm.com/developerworks/systems/library/es-virtjava/index.html
http://www.ibm.com/developerworks/systems/library/es-virtjava/index.html

Live application mobility on AIX WPAR
IBM AIX Workload Partitions (WPARs) are software-created, virtualized operating
system environments in a single instance of the AIX operating system. To most
applications, the workload partition appears to be a separate instance of AIX.
Applications in workload partitions have a private execution environment.

Applications in workload partitions are isolated in terms of process and signal, and
can be isolated in file system space. Workload partitions can have their own
unique users and groups. Workload partitions have dedicated network addresses
and interprocess communication (IPC) is restricted to processes running in the
same workload partition.

There are two forms of workload partitions:

System WPAR
A System WPAR presents an environment like a stand-alone AIX system. A
System WPAR runs most of the system services that are found in a
stand-alone system and does not share writable file systems with any other
WPAR or the global system.

Application WPAR
An Application WPAR has all the process isolation that a System WPAR
provides, except that it shares file system namespace with the global
system and any other Application WPAR defined in the system. Other than
the application itself, a typical Application WPAR runs an additional
lightweight init process in the WPAR.

You can configure either WPAR type for mobility, which allows you to move
running WPAR instances between physical systems using the AIX Workload
Manager.

From Version 6 Service Refresh 1, the IBM SDK for Java supports WPAR mobility.
The IBM SDK for Java can also respond to WPAR mobility events and use system
environment changes in the same way as when a DLPAR is reconfigured. See
“Dynamic Logical Partitioning (DLPAR) support” on page 27 for more information.

For more information about WPAR, see http://www.redbooks.ibm.com/redpieces/
abstracts/SG247431.html.

Using the IPv6 extensions
This release uses the IPv6 extensions to the TCP/IP protocol, by default.

If you do not want to use IPv6 protocols, you can set the property
java.net.preferIPv4Stack to force the use of IPv4 protocols.

Enhanced BiDirectional support
The IBM SDK includes enhanced BiDirectional support.

For more information, see http://www.ibm.com/developerworks/java/jdk/
additional/.

API documentation to support the com.ibm.bidiTools.bdlayout package is available
here: API documentation

28 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.redbooks.ibm.com/redpieces/abstracts/SG247431.html
http://www.redbooks.ibm.com/redpieces/abstracts/SG247431.html
http://www.ibm.com/developerworks/java/jdk/additional/
http://www.ibm.com/developerworks/java/jdk/additional/
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.api.60.doc/api_overview.dita

Euro symbol support
The IBM SDK and Runtime Environment set the Euro as the default currency for
those countries in the European Monetary Union (EMU) for dates on or after 1
January, 2002. From 1 January 2008, Cyprus and Malta also have the Euro as the
default currency.

To use the old national currency, specify –Duser.variant=PREEURO on the Java
command line.

If you are running the UK, Danish, or Swedish locales and want to use the Euro,
specify –Duser.variant=EURO on the Java command line.

Using Indian and Thai input methods
From Version 6, the Indian and Thai input methods are not available by default.
You must manually include the input method jar files in your Java extensions
path to use the Indian and Thai input methods.

About this task

In Version 5.0, the input method jar files were included in the jre/lib/ext
directory and were automatically loaded by the JVM. In Version 6, the input
method jar files are included in the jre/lib/im directory and you must manually
add them to the Java extensions path to enable Indian and Thai input methods.

Procedure
v Copy the indicim.jar and thaiim.jar files from the jre/lib/im directory to the

jre/lib/ext directory.
v Add the jre/lib/im directory to the extension directories system property. Use

the following command-line option:
java -Djava.ext.dirs=/usr/java6_64/jre/lib/ext:
/usr/java6_64/jre/lib/im <class>

What to do next

If the SDK or Runtime Environment was installed in a different directory, replace
/usr/java6_64/ with the directory in which the SDK or Runtime Environment was
installed.

Scaling support
To increase the maximum number of threads your system can support, reduce the
maximum native stack size using the -Xss<size> option.

The default native stack size is 1024 KB. A smaller setting allows for a larger
number of threads. For example:
java -Xss<size> <other params>

To increase the maximum number of file descriptors your system can support, use
the ulimit or chuser commands, for example:
ulimit -n 3000

or
chuser nofiles=3000 <user_id>

Chapter 4. Running Java applications 29

Use ulimit -a to show the current limit.
Related concepts:
“System resource limits and the ulimit command”
The operating system provides ways of limiting the amount of resource that can be
used. Limits are set for each user, but are applied separately to each process that is
running for that user. These limits can affect Java applications, for example if
certain limits are too low, the system might not be able to generate a complete Java
dump file.

System resource limits and the ulimit command
The operating system provides ways of limiting the amount of resource that can be
used. Limits are set for each user, but are applied separately to each process that is
running for that user. These limits can affect Java applications, for example if
certain limits are too low, the system might not be able to generate a complete Java
dump file.

Limits can be hard or soft. Hard limits are set by the root user. Only the root user
can increase hard limits, though other users can decrease them. Soft limits can be
set and changed by other users, but they cannot exceed the hard limits. To view
the current limits, enter the following command:
ulimit -Xa

where X is either H for hard limits, or S for soft limits. If you do not specify a
value for X, the soft limits are displayed.

Setting temporary limits

Use the ulimit command to set limits that apply only to your current session. If
you use the command in a script, the settings apply during the run time of the
script. The settings also apply to processes that are created by the script, or other
scripts that are called from within the first script. The format of the command is as
follows:
ulimit -[H|S]limit_name limit_value

Where H indicates a hard limit, and S indicates a soft limit. If you omit this
parameter, the soft limit is set. The following example sets a soft file size limit to
unlimited:
ulimit -f unlimited

Storing limit settings

Use the /etc/security/limits file to store ulimit settings. If you are setting a hard
and a soft limit, set the hard limit first in the file. Settings can be default, or
specific to individual users or groups. Changes to this file should be made by a
system administrator.

Note: Different work partitions might have different limit files.

View the documentation for your version of the operating system for instructions
on how to edit the file, because the steps can vary between versions. The file itself
might contain instructions in the commented section.

Changes to the file take effect when you start a new login shell, for example bash
-l, or if you log out and then log back in to the system.

30 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Note: The init command, and its child processes, do not use the limits that are
specified in the limit file. When the operating system starts, the init command
runs the commands that are listed in the inittab file, or in scripts in the init.d
directory. These actions create child processes of the init command. At this point,
the initialization process has not yet loaded the settings in the limit file. These
settings are loaded only when a login terminal session is started, or when a user
logs in to the system. If you add a command to the inittab file, or to scripts in the
init.d directory, and you want the command to use specific user limits, you must
include actions to set the user limit values as required.

Available limits

The limits that you can set vary between versions of the operating system; view
the documentation for your version for details.
Related information:
AIX information centers

View more detailed information about user limits, for your version of AIX.

AIX Stack Execution Disable
AIX 5300-03 implements Buffer Overflow Protection (BOP) using Stack/heap
Execution Disable (SED). SED prevents buffer overflow attacks by not executing
code in data areas of memory. AIX system administrators control the way SED is
used. Java JIT implementations generate machine code in C heap memory;
therefore, Java launchers must be exempt from SED.

You make programs exempt from SED by setting the XCOFF executable file header
flag DEP_EXEMPT. All Java launchers have the appropriate bit set to exempt them
from the SED feature.

Applications that use their own Java launchers and create JVM instances using JNI
must be explicitly patched to exempt them from SED. Use the sedmgr utility and
verify the change using the dump or sedmgr utility.

The syntax for using these utilities is:
sedmgr -c exempt <launcher>
dump -X64 -ov <launcher>

For more details on SED, see Stack Execution Disable protection in the AIX product
documentation.

Chapter 4. Running Java applications 31

http://publib16.boulder.ibm.com/pseries/index.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.security/doc/security/stack_exec_disable.htm

32 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 5. Developing Java applications

The SDK contains many tools and libraries required for Java software
development.

See “Contents of the SDK” on page 6 for details of the tools available.

Using XML
The IBM SDK contains the XML4J and XL XP-J parsers, the XL TXE-J 1.0 XSLT
compiler, and the XSLT4J XSLT interpreter. These tools allow you to parse,
validate, transform, and serialize XML documents independently from any given
XML processing implementation.

Use factory finders to locate implementations of the abstract factory classes, as
described in “Selecting an XML processor” on page 34. By using factory finders,
you can select a different XML library without changing your Java code.

Available XML libraries

The IBM SDK for Java contains the following XML libraries:

XML4J 4.5

XML4J is a validating parser providing support for the following
standards:
v XML 1.0 (4th edition)
v Namespaces in XML 1.0 (2nd edition)
v XML 1.1 (2nd edition)
v Namespaces in XML 1.1 (2nd edition)
v W3C XML Schema 1.0 (2nd Edition)
v XInclude 1.0 (2nd Edition)
v OASIS XML Catalogs 1.0
v SAX 2.0.2
v DOM Level 3 Core, Load and Save
v DOM Level 2 Core, Events, Traversal and Range
v JAXP 1.4

XML4J 4.5 is based on Apache Xerces-J 2.9.0. See http://xerces.apache.org/
xerces2-j/ for more information.

XL XP-J 1.1

XL XP-J 1.1 is a high-performance non-validating parser that provides
support for StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing
and streaming serialization of XML 1.0 and XML 1.1 documents. See the
“XL XP-J reference information” on page 38 section for more details about
what is supported by XL XP-J 1.1.

XL TXE-J 1.0

For Version 5.0, the IBM SDK for Java included the XSLT4J compiler and
interpreter. The XSLT4J interpreter was used by default.

© Copyright IBM Corp. 2003, 2016 33

http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/

For Version 6 and later, the IBM SDK for Java includes XL TXE-J. XL TXE-J
includes the XSLT4J 2.7.8 interpreter and a new XSLT compiler. The new
compiler is used by default. The XSLT4J compiler is no longer included
with the IBM SDK for Java. See “Migrating to the XL-TXE-J” on page 35
for information about migrating to XL TXE-J.

XL TXE-J provides support for the following standards:
v XSLT 1.0
v XPath 1.0
v JAXP 1.4

Selecting an XML processor

XML processor selection is performed using service providers. When using a
factory finder, Java looks in the following places, in this order, to see which service
provider to use:
1. The system property with the same name as the service provider.
2. The service provider specified in a properties file.
v For XMLEventFactory, XMLInputFactory, and XMLOutputFactory only. The

value of the service provider in the file /etc/java6_64/jre/lib/
stax.properties.

v For other factories. The value of the service provider in the file
/etc/java6_64/jre/lib/jaxp.properties.

3. The contents of the META-INF/services/<service.provider> file.
4. The default service provider.

The following service providers control the XML processing libraries used by Java:

javax.xml.parsers.SAXParserFactory
Selects the SAX parser. By default,
org.apache.xerces.jaxp.SAXParserFactoryImpl from the XML4J library is used.

javax.xml.parsers.DocumentBuilderFactory
Selects the document builder. By default,
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl from the XML4J library is
used.

javax.xml.datatype.DatatypeFactory
Selects the datatype factory. By default,
org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl from the XML4J library is
used.

javax.xml.stream.XMLEventFactory
Selects the StAX event factory. By default,
com.ibm.xml.xlxp.api.stax.XMLEventFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLInputFactory
Selects the StAX parser. By default,
com.ibm.xml.xlxp.api.stax.XMLInputFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLOutputFactory
Selects the StAX serializer. By default,
com.ibm.xml.xlxp.api.stax.XMLOutputFactoryImpl from the XL XP-J library is
used.

34 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

javax.xml.transform.TransformerFactory
Selects the XSLT processor. Possible values are:

com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl
Use the XL TXE-J compiler. This value is the default.

org.apache.xalan.processor.TransformerFactoryImpl
Use the XSLT4J interpreter.

javax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema
Selects the schema factory for the W3C XML Schema language. By default,
org.apache.xerces.jaxp.validation.XMLSchemaFactory from the XML4J library is
used.

javax.xml.xpath.XPathFactory
Selects the XPath processor. By default,
org.apache.xpath.jaxp.XPathFactoryImpl from the XSLT4J library is used.

Migrating to the XL-TXE-J
From Version 6, the XL TXE-J compiler replaces the XSLT4J interpreter as the
default XSLT processor. If you are migrating applications from older versions of
Java, follow these steps to prepare your application for the new library.

About this task

The XL TXE-J compiler is faster than the XSLT4J interpreter when you are applying
the same transformation more than once. If you perform each individual
transformation only once, the XL TXE-J compiler is slower than the XSLT4J
interpreter because compilation and optimization reduce performance.

To continue using the XSLT4J interpreter as your XSLT processor, set the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

To migrate to the XL-TXE-J compiler, follow the instructions in this task.

Procedure
1. Use com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl when setting the

javax.xml.transform.TransformerFactory service provider.
2. Regenerate class files generated by the XSLT4J compiler. XL TXE-J cannot

execute class files generated by the XSLT4J compiler.
3. Some methods generated by the compiler might exceed the JVM method size

limit, in which case the compiler attempts to split these methods into smaller
methods.
v If the compiler splits the method successfully, you receive the following

warning:
Some generated functions exceeded the JVM method size limit and were
automatically split into smaller functions. You might get better
performance by manually splitting very large templates into smaller
templates, by using the 'splitlimit' option to the Process or Compile
command, or by setting the 'http://www.ibm.com/xmlns/prod/xltxe-j/
split-limit' transformer factory attribute.You can use the compiled
classes, but you might get better performance by controlling the split limit
manually.

v If the compiler does not split the method successfully, you receive one of the
following exceptions:

Chapter 5. Developing Java applications 35

com.ibm.xtq.bcel.generic.ClassGenException: Branch target offset too
large for short or
bytecode array size > 65535 at offset=#####Try setting the split limit
manually, or decreasing the split limit.

To set the split limit, use the -SPLITLIMIT option when using the Process or
Compile commands, or the http://www.ibm.com/xmlns/prod/xltxe-j/split-
limit transformer factory attribute when using the transformer factory. The
split limit can be between 100 and 2000. When setting the split limit manually,
use the highest split limit possible for best performance.

4. XL TXE-J might need more memory than the XSLT4J compiler. If you are
running out of memory or performance seems slow, increase the size of the
heap using the -Xmx option.

5. Migrate your application to use the new attribute keys. The old transformer
factory attribute keys are deprecated. The old names are accepted with a
warning.

Table 2. Changes to attribute keys from the XSL4J compiler to the XL TXE-J compiler

XSL4J compiler attribute XL TXE-J compiler attribute

translet-name http://www.ibm.com/xmlns/prod/xltxe-j/translet-name

destination-directory http://www.ibm.com/xmlns/prod/xltxe-j/destination-
directory

package-name http://www.ibm.com/xmlns/prod/xltxe-j/package-name

jar-name http://www.ibm.com/xmlns/prod/xltxe-j/jar-name

generate-translet http://www.ibm.com/xmlns/prod/xltxe-j/generate-translet

auto-translet http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet

use-classpath http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath

debug http://www.ibm.com/xmlns/prod/xltxe-j/debug

indent-number http://www.ibm.com/xmlns/prod/xltxe-j/indent-number

enable-inlining Obsolete in new compiler

6. Optional: For best performance, ensure that you are not recompiling XSLT
transformations that can be reused. Use one of the following methods to reuse
compiled transformations:
v If your stylesheet does not change at run time, compile the stylesheet as part

of your build process and put the compiled classes on your classpath. Use
the org.apache.xalan.xsltc.cmdline.Compile command to compile the
stylesheet and set the http://www.ibm.com/xmlns/prod/xltxe-j/use-
classpath transformer factory attribute to true to load the classes from the
classpath.

v If your application will use the same stylesheet during multiple runs, set the
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet transformer factory
attribute to true to automatically save the compiled stylesheet to disk for
reuse. The compiler will use a compiled stylesheet if it is available, and
compile the stylesheet if it is not available or is out-of-date. Use the
http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory transformer
factory attribute to set the directory used to store compiled stylesheets. By
default, compiled stylesheets are stored in the same directory as the
stylesheet.

v If your application is a long-running application that reuses the same
stylesheet, use the transformer factory to compile the stylesheet and create a

36 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Templates object. You can use the Templates object to create Transformer
objects without recompiling the stylesheet. The Transformer objects can also
be reused but are not thread-safe.

v If your application uses each stylesheet just once or a very small number of
times, or you are unable to make any of the other changes listed in this step,
you might want to continue to use the XSLT4J interpreter by setting the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

Securing Java API for XML processing (JAXP) against
malformed input

If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. If you specify limits, you must override the default XML parser
configuration with a custom configuration.

About this task

To protect your application from malformed data, you can enforce specific limits
during JAXP processing. These limits can be set in your jaxp.properties file, or by
specifying various system properties on the command line. However, for these
limits to take effect you must also override the default XML parser configuration
with a custom configuration that allows these secure processing limits.

Procedure
1. Select the limits that you want to set for your application.
v To limit the number of entity expansions in an XML document, see

“-Djdk.xml.entityExpansionLimit” on page 92.
v To limit the maximum size of a general entity, see

“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93.
v To limit the maximum size of a parameter entity, see

“-Djdk.xml.maxParameterEntitySizeLimit” on page 94.
v To limit the length of XML names in XML documents, see

“-Djdk.xml.maxXMLNameLimit” on page 95.
v To limit the total size of all entities that include general and parameter

entities, see “-Djdk.xml.totalEntitySizeLimit” on page 96.
v To define the maximum number of content model nodes that can be created

in a grammar, see “-Djdk.xml.maxOccur” on page 93.
v To control whether external entities are resolved in an XML document, see

“-Djdk.xml.resolveExternalEntities” on page 95.
2. To override the default XML parser configuration, set the custom configuration

by specifying the following system property on the command line:
-Dorg.apache.xerces.xni.parser.XMLParserConfiguration=config_file, where
config_file is org.apache.xerces.parsers.SecureProcessingConfiguration. For
more information about the full override mechanism, see http://
xerces.apache.org/xerces2-j/faq-xni.html#faq-2.

XML reference information
The XL XP-J and XL TXE-J XML libraries are new for Version 6 of the SDK. This
reference information describes the features supported by these libraries.

Chapter 5. Developing Java applications 37

|

|

|
|
|
|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2
http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2

XL XP-J reference information
XL XP-J 1.1 is a high-performance non-validating parser that provides support for
StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing and streaming
serialization of XML 1.0 and XML 1.1 documents.

Unsupported features

The following optional StAX features are not supported by XL XP-J:
v DTD validation when using an XMLStreamReader or XMLEventReader. The XL

XP-J parser is non-validating.
v When using an XMLStreamReader to read from a character stream

(java.io.Reader), the Location.getCharaterOffset() method always returns -1. The
Location.getCharaterOffset() returns the byte offset of a Location when using an
XMLStreamReader to read from a byte stream (java.io.InputStream).

XMLInputFactory reference

The javax.xml.stream.XMLInputFactory implementation supports the following
properties, as described in the XMLInputFactory Javadoc information:
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/
XMLInputFactory.html.

Property name Supported?

javax.xml.stream.isValidating No. The XL XP-J scanner does not support validation.

javax.xml.stream.isNamespaceAware Yes, supports true and false. For XMLStreamReaders
created from DOMSources, namespace processing
depends on the methods that were used to create the
DOM tree, and this value has no effect.

javax.xml.stream.isCoalescing Yes

javax.xml.stream.isReplacingEntityReferences Yes. For XMLStreamReaders created from DOMSources,
if entities have already been replaced in the DOM tree,
setting this parameter has no effect.

javax.xml.stream.isSupportingExternalEntities Yes

javax.xml.stream.supportDTD True is always supported. Setting the value to false
works only if the
com.ibm.xml.xlxp.support.dtd.compat.mode system
property is also set to false.

When both properties are set to false, parsers created by
the factory throw an XMLStreamException when they
encounter an entity reference that requires expansion.
This setting is useful for protecting against Denial of
Service (DoS) attacks involving entities declared in the
DTD.

Setting the value to false does not work before Service
Refresh 2.

javax.xml.stream.reporter Yes

javax.xml.stream.resolver Yes

XL XP-J also supports the optional method
createXMLStreamReader(javax.xml.transform.Source), which allows StAX readers to
be created from DOM and SAX sources.

38 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html

XL XP-J also supports the javax.xml.stream.isSupportingLocationCoordinates
property. If you set this property to true, XMLStreamReaders created by the factory
return accurate line, column, and character information using Location objects. If
you set this property to false, line, column, and character information is not
available. By default, this property is set to false for performance reasons.

XMLStreamReader reference

The javax.xml.stream.XMLStreamReader implementation supports the following
properties, as described in the XMLStreamReader Javadoc: http://docs.oracle.com/
javase/6/docs/api/javax/xml/stream/XMLStreamReader.html.

Property name Supported?

javax.xml.stream.entities Yes

javax.xml.stream.notations Yes

XL XP-J also supports the javax.xml.stream.isInterning property. This property
returns a boolean value indicating whether or not XML names and namespace
URIs returned by the API calls have been interned by the parser. This property is
read-only.

XMLOutputFactory reference

The javax.xml.stream.XMLOutputFactory implementation supports the following
properties, as described in the XMLOutputFactory Javadoc: http://
docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

XL XP-J also supports the
javax.xml.stream.XMLOutputFactory.recycleWritersOnEndDocument property. If
you set this property to true, XMLStreamWriters created by this factory are
recycled when writeEndDocument() is called. After recycling, some
XMLStreamWriter methods, such as getNamespaceContext(), must not be called.
By default, XMLStreamWriters are recycled when close() is called. You must call
the XMLStreamWriter.close() method when you have finished with an
XMLStreamWriter, even if this property is set to true.

XMLStreamWriter reference

The javax.xml.stream.XMLStreamWriter implementation supports the following
properties, as described in the XMLStreamWriter Javadoc: http://docs.oracle.com/
javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

Properties on XMLStreamWriter objects are read-only.

XL XP-J also supports the
javax.xml.stream.XMLStreamWriter.isSetPrefixBeforeStartElement property. This
property returns a Boolean indicating whether calls to setPrefix() and

Chapter 5. Developing Java applications 39

http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html

setDefaultNamespace() should occur before calls to writeStartElement() or
writeEmptyElement() to put a namespace prefix in scope for that element. XL XP-J
always returns false; calls to setPrefix() and setDefaultNamespace() should occur
after writeStartElement() or writeEmptyElement().

XL TXE-J reference information
XL TXE-J is an XSLT library containing the XSLT4J 2.7.8 interpreter and a XSLT
compiler.

Feature comparison table

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J compiler.

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

http://javax.xml.transform.stream.StreamSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.stream.StreamResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXSource/feature
feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXResult/feature
feature

Yes Yes Yes

http://javax.xml.transform.stax.StAXSource/feature
feature

Yes No Yes

http://javax.xml.transform.stax.StAXResult/feature
feature

Yes No Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature feature

Yes Yes Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature/xmlfilter feature

Yes Yes Yes

http://javax.xml.XMLConstants/feature/secure-
processing feature

Yes Yes Yes

http://xml.apache.org/xalan/features/incremental
attribute

Yes No No

http://xml.apache.org/xalan/features/optimize
attribute

Yes No No

http://xml.apache.org/xalan/properties/source-
location attribute

Yes No No

translet-name attribute N/A Yes Yes (with new
name)

destination-directory attribute N/A Yes Yes (with new
name)

package-name attribute N/A Yes Yes (with new
name)

40 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J
compiler. (continued)

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

jar-name attribute N/A Yes Yes (with new
name)

generate-translet attribute N/A Yes Yes (with new
name)

auto-translet attribute N/A Yes Yes (with new
name)

use-classpath attribute N/A Yes Yes (with new
name)

enable-inlining attribute No Yes No (obsolete in TL
TXE-J)

indent-number attribute No Yes Yes (with new
name)

debug attribute No Yes Yes (with new
name)

Java extensions Yes Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

JavaScript extensions Yes No No

Extension elements Yes No No

EXSLT extension functions Yes Yes (excluding
dynamic)

Yes (excluding
dynamic)

redirect extension Yes Yes (excluding
redirect:open and
redirect:close)

Yes

output extension No Yes Yes

nodeset extension Yes Yes Yes

NodeInfo extension functions Yes No No

SQL library extension Yes No No

pipeDocument extension Yes No No

evaluate extension Yes No No

tokenize extension Yes No No

XML 1.1 Yes Yes Yes

Notes
1. With the Process command, use -FLAVOR sr2sw to transform using StAX stream

processing, and -FLAVOR er2ew for StAX event processing.
2. The new compiler does not look for the

org.apache.xalan.xsltc.dom.XSLTCDTMManager service provider. Instead, if
StreamSource is used, the compiler switches to a high-performance XML parser.

3. Inlining is obsolete in XL TXE-J.
v The -XN option to the Process command is silently ignored.

Chapter 5. Developing Java applications 41

v The -n option to the Compile command is silently ignored.
v The enable-inlining transformer factory attribute is silently ignored.

4. The org.apache.xalan.xsltc.trax.SmartTransformerFactoryImpl class is no longer
supported.

Using an older version of Xerces or Xalan
If you are using an older version of Xerces (before 2.0) or Xalan (before 2.3) in the
endorsed override, you might get a NullPointerException when you start your
application. This exception occurs because these older versions do not handle the
jaxp.properties file correctly.

About this task

To avoid this situation, use one of the following workarounds:
v Upgrade to a newer version of the application that implements the latest Java

API for XML Programming (JAXP) specification (https://jaxp.dev.java.net/).
v Remove the jaxp.properties file from /etc/java6_64/jre/lib.
v Uncomment the entries in the jaxp.properties file in /etc/java6_64/jre/lib.
v Copy the jaxp.properties.sample file to jaxp.properties in

/etc/java6_64/jre/lib. Uncomment the entries in the jaxp.properties file.
Create a symbolic link to the jaxp.properties file from the /usr/java6_64/jre/
lib directory.

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory using the -D command-line option.

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory in your application. For an example,
see the JAXP 1.4 specification.

v Explicitly set the SAX parser, Document builder, or Transformer factory using
the IBM_JAVA_OPTIONS environment variable.
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.SAXParserFactory=

org.apache.xerces.jaxp.SAXParserFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.DocumentBuilderFactory=

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.transform.TransformerFactory=

org.apache.xalan.processor.TransformerFactoryImpl

Debugging Java applications
To debug Java programs, you can use the Java Debugger (JDB) application or other
debuggers that communicate by using the Java Platform Debugger Architecture
(JPDA) that is provided by the SDK for the operating system.

The SDK includes a Plug-in for the AIX debugger DBX. Although the DBX Plug-in
is supplied as part of the SDK, it is not supported. However, IBM will accept bug
reports.

More information about problem diagnosis using Java can be found in the
Troubleshooting and support.

42 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Java Debugger (JDB)
The Java Debugger (JDB) is included in the SDK. The debugger is started with the
jdb command; it attaches to the JVM using JPDA.

To debug a Java application:
1. Start the JVM with the following options:

java -agentlib:jdwp=transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. In a separate session, you can attach the debugger to the JVM:

jdb -attach <port>

The debugger will attach to the JVM, and you can now issue a range of
commands to examine and control the Java application; for example, type run
to allow the Java application to start.

For more information about JDB options, type:
jdb -help

For more information about JDB commands:
1. Type jdb
2. At the jdb prompt, type help

You can also use JDB to debug Java applications running on remote workstations.
JPDA uses a TCP/IP socket to connect to the remote JVM.
1. Start the JVM with the following options:

java -agentlib:jdwp=transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. Attach the debugger to the remote JVM:

jdb -attach <host>:<port>

The Java Virtual Machine Debugging Interface (JVMDI) is not supported in this
release. It has been replaced by the Java Virtual Machine Tool Interface (JVMTI).

For more information about JDB and JPDA and their usage, see these Web sites:
v http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
v http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
v http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/jdb.html

Selective debugging
Use the com.ibm.jvm.Debuggable annotation to mark classes and methods that
should be available for debugging. Use the -XselectiveDebug parameter to enable
selective debugging at run time. The JVM optimizes methods that do not need
debugging to provide better performance in a debugging environment.

About this task

Selective debugging is useful when Java is being used as a framework for
development, for example, as an IDE. The Java code for the IDE is optimized for
performance while the user code is debugged.

Chapter 5. Developing Java applications 43

http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/jdb.html

Procedure
1. Import the Debuggable annotation from the com.ibm.jvm package.

import com.ibm.jvm.Debuggable;

2. Decorate methods using the Debuggable annotation.
@Debuggable
public int method1() {

...
}

3. Optional: You can also decorate classes using the Debuggable annotation. All
methods in the class will remain debuggable.
@Debuggable
public class Class1 {

...
}

4. Enable selective debugging at run time using the -XselectiveDebug
command-line option.

Results

Applications will run faster while being debugged because the core Java API and
any IDE code can be optimized for performance.

Determining whether your application is running on a 32-bit or 64-bit
JVM

Some Java applications must be able to determine whether they are running on a
32-bit JVM or on a 64-bit JVM. For example, if your application has a native code
library, the library must be compiled separately in 32- and 64-bit forms for
platforms that support both 32- and 64-bit modes of operation. In this case, your
application must load the correct library at run environmenttime, because it is not
possible to mix 32- and 64-bit code.

About this task

The system property com.ibm.vm.bitmode allows applications to determine the
mode in which your JVM is running. It returns the following values:
v 32 - the JVM is running in 32-bit mode
v 64 - the JVM is running in 64-bit mode

You can inspect the com.ibm.vm.bitmode property from inside your application
code using the call:
System.getProperty("com.ibm.vm.bitmode");

Determining which JVM version your application is running on
You can programmatically determine which JVM version your application is
running on by querying the java.runtime.version system property.

About this task

The system property java.runtime.version can be queried at run time to
determine the version of the JVM that is running.

44 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

|
|

|

|
|

Procedure

Use the following call: System.getProperty("java.runtime.version");

Results

This call returns a Java String with content similar to:
pwi3260sr11-20120412_01 (SR11)

The result of this query is similar to the command-line option java -fullversion.
For more information about finding the Java version using command-line options,
see “Obtaining version information” on page 17.

How the JVM processes signals
When a signal is raised that is of interest to the JVM, a signal handler is called.
This signal handler determines whether it has been called for a Java or non-Java
thread.

If the signal is for a Java thread, the JVM takes control of the signal handling. If an
application handler for this signal is installed and you did not specify the
-Xnosigchain command-line option, the application handler for this signal is called
after the JVM has finished processing.

If the signal is for a non-Java thread, and the application that installed the JVM
had previously installed its own handler for the signal, control is given to that
handler. Otherwise, if the signal is requested by the JVM or Java application, the
signal is ignored or the default action is taken.

For exception and error signals, the JVM either:
v Handles the condition and recovers, or
v Enters a controlled shut down sequence where it:

1. Produces dumps, to describe the JVM state at the point of failure
2. Calls your application's signal handler for that signal
3. Performs the necessary JVM cleanup

For interrupt signals, the JVM also enters a controlled shut down sequence, but
this time it is treated as a normal termination that:
1. Calls your application's signal handler for that signal
2. Performs the necessary JVM cleanup

The shut down is identical to the shut down initiated by a call to the Java method
System.exit().

Other signals that are used by the JVM are for internal control purposes and do
not cause it to stop. The only control signal of interest is SIGQUIT, which causes a
Javadump to be generated.

Signals used by the JVM
The types of signals are Exceptions, Errors, Interrupts, and Controls.

Table 4 on page 46 shows the signals that are used by the JVM. The signals are
grouped in the table by type or use, as follows:

Chapter 5. Developing Java applications 45

|

|

|

|

|

|
|
|

Exceptions
The operating system synchronously raises an appropriate exception signal
whenever an unrecoverable condition occurs.

Errors The JVM raises a SIGABRT if it detects a condition from which it cannot
recover.

Interrupts
Interrupt signals are raised asynchronously, from outside a JVM process, to
request shut down.

Controls
Other signals that are used by the JVM for control purposes.

Table 4. Signals used by the JVM

Signal Name Signal type Description
Disabled by
-Xrs

Disabled by
-Xrs:sync

SIGBUS (7) Exception Incorrect access
to memory (data
misalignment)

Yes Yes

SIGSEGV (11) Exception Incorrect access
to memory
(write to
inaccessible
memory)

Yes Yes

SIGILL (4) Exception Illegal
instruction
(attempt to call
an unknown
machine
instruction)

Yes Yes

SIGFPE (8) Exception Floating point
exception
(divide by zero)

Yes Yes

SIGABRT (6) Error Abnormal
termination. The
JVM raises this
signal whenever
it detects a JVM
fault.

Yes Yes

SIGINT (2) Interrupt Interactive
attention
(CTRL-C). JVM
exits normally.

Yes No

SIGTERM (15) Interrupt Termination
request. JVM
will exit
normally.

Yes No

SIGHUP (1) Interrupt Hang up. JVM
exits normally.

Yes No

SIGQUIT (3) Control By default, this
triggers a
Javadump.

Yes No

No Name (40) Control An AIX reserved
signal. Used by
the AIX JVM for
internal control
purposes.

Yes No

46 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Table 4. Signals used by the JVM (continued)

Signal Name Signal type Description
Disabled by
-Xrs

Disabled by
-Xrs:sync

SIGRECONFIG
(58)

Control Reserved to
detect any
change in the
number of
CPUs,
processing
capacity, or
physical
memory.

Yes No

SIGTRAP (5) Control Used by the JIT. Yes Yes

SIGRTMIN (50) Control Used by the
JVM for internal
control
purposes.

No No

SIGRTMAX (57) Control Used by the
SDK.

No No

SIGCHLD (20) Control Used by the
SDK for internal
control.

No No

Note: A number supplied after the signal name is the standard numeric value for
that signal.

Use the -Xrs (reduce signal usage) option to prevent the JVM from handling most
signals. For more information, see Oracle's Java application launcher page.

Do not use the -qflttrap C compiler setting because it provides the possibility of
SIGTRAPs being generated, which might then affect the JIT. If you want to have
floating point exceptions generated, include this call in your code so that it
generates a SIGFPE signal:
fp_trap(FP_TRAP_SYNC)

If you install a signal handler for signal numbers 5 (SIGTRAP) or 58
(SIGRECONFIG), you affect JVM performance because these signals are used for
internal control purposes.

Signals 1 (SIGHUP), 2 (SIGINT), 4 (SIGILL), 7 (SIGBUS), 8 (SIGFPE), 11 (SIGSEGV),
and 15 (SIGTERM) on JVM threads cause the JVM to shut down; therefore, an
application signal handler should not attempt to recover from these unless it no
longer requires the JVM.

Linking a native code driver to the signal-chaining library
The Runtime Environment contains signal-chaining. Signal-chaining enables the
JVM to interoperate more efficiently with native code that installs its own signal
handlers.

About this task

The libjsig.a library ensures that calls such as signal(), sigset(), and sigaction() are
intercepted so that their handlers do not replace the JVM's signal handlers. Instead,
these calls save the new signal handlers, or "chain" them behind the handlers that

Chapter 5. Developing Java applications 47

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html

are installed by the JVM. Later, when any of these signals are raised and found not
to be targeted at the JVM, the preinstalled handlers are invoked.

If you install signal handlers that use sigaction() , some sa_flags are not observed
when the JVM uses the signal. These are:
v SA_RESTART - This is always set.

The libjsig.a library also hides JVM signal handlers from the application. Therefore,
calls such as signal(), sigset(), and sigaction() that are made after the JVM has
started no longer return a reference to the JVM's signal handler, but instead return
any handler that was installed before JVM startup.

The environment variable JAVA_HOME should be set to the location of the SDK, for
example, install_dir.

To use libjsig.a:
v Link it with the application that creates or embeds a JVM:

cc_r -q64 <other compile/link parameter> -L install_dir
-ljsig -L install_dir/jre/bin/j9vm -ljvm java_application.c

Note: Use xlc_r or xlC_r in place of cc_r if that is how you usually call the
compiler or linker.

Writing JNI applications
Valid Java Native Interface (JNI) version numbers that programs can specify on the
JNI_CreateJavaVM() API call are: JNI_VERSION_1_2(0x00010002) and
JNI_VERSION_1_4(0x00010004).

Restriction: Version 1.1 of the JNI is not supported.

This version number determines only the level of the JNI to use. The actual level
of the JVM that is created is specified by the JSE libraries (use the java -version
command to show the JVM level). The JNI level does not affect the language
specification that is implemented by the JVM, the class library APIs, or any other
area of JVM behavior. For more information, see http://docs.oracle.com/javase/6/
docs/technotes/guides/jni/.

If your application needs two JNI libraries, one built for 32-bit and the other for
64-bit, use the com.ibm.vm.bitmode system property to determine if you are
running with a 32-bit or 64-bit JVM and choose the appropriate library.

Supported compilers
These compilers have been tested with the IBM SDK.

The IBM XL C/C++ compiler V9.0 is supported for AIX 64-bit on PowerPC.

JNI compatibility
If you are working with the Java Native Interface (JNI), you must ensure that your
system is set up appropriately.

The install_dir/demo/jni directory includes a readme file and example programs.
The demos can be optionally installed with the Java6_64.samples package.

48 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

If you are writing a C or C++ program that uses the JNI Invocation API (that is,
the program creates a Java Virtual Machine and calls Java code), you might want
to ensure that the following variables are set appropriately. By default, all the Java
launchers that are shipped with the SDK (for example, java, jar) set up these
environment variables to the values that are specified as follows:

export AIXTHREAD_SCOPE=S

export AIXTHREAD_MUTEX_DEBUG=OFF

export AIXTHREAD_RWLOCK_DEBUG=OFF

export AIXTHREAD_COND_DEBUG=OFF

When you build a C or C++ program that uses the invocation API, your LIBPATH
variable must include the directories that contain the JVM shared libraries, lib_dir
and lib_dir/j9vm, as well as the directories that contain the application's shared
libraries.

You must build:
v 64-bit executables and shared objects with the -qarch=ppc option
v JNI executables and shared objects for the 64-bit SDK as a 64-bit program or

shared object. Use the -q64 option.

For information on JNI runtime linking, see JNI runtime linking.

JNI runtime linking
The Java Native Interface (JNI) enables runtime linking to dynamic native libraries.

For runtime linking, applications can be linked by using the -brtl loader
option.For Version 6, runtime linking is supported from service refresh 9. If
runtime linking causes a symbol conflict, the application must resolve the conflict
by renaming the symbol on the application side, or by turning off runtime linking.

Dynamic linking

To dynamically link a native library, you should compile your native methods (C
or C++ functions called by Java) into AIX shared objects (dynamically loaded
libraries). For example, if your native methods are stored in the file nm.c, you
could create the shared object with the following command:
cc_r -qmkshrobj -q64 -I install_dir/include
-o libnm.a nm.c

The -qmkshrobj option disables runtime linking. For more information about
shared object files, runtime linking, and the use of cc and ld command-line
options, see:
v Developing and Porting C and C++ Applications on AIX at http://

www.redbooks.ibm.com/abstracts/sg245674.html
v The C and C++ compiler documentation website at http://www.ibm.com/

software/awdtools/xlcpp/library
v The AIX online documentation at http://www16.boulder.ibm.com/pseries/

en_US/infocenter/base/aix.htm

Before you run a Java program that uses native methods, ensure that LIBPATH
contains the list of directories that hold the shared objects for the native methods.

Chapter 5. Developing Java applications 49

http://www.redbooks.ibm.com/abstracts/sg245674.html
http://www.redbooks.ibm.com/abstracts/sg245674.html
http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/xlcpp/library/
http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm
http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm

For more information about building AIX shared objects, see C and C++ Application
Development on AIX. Go to http://www.ibm.com/redbooks and search for
"SG245674".

If you set the setuid or setgid attribute on JNI native code programs, that setting
changes the effective LIBPATH environment variable. This change might cause
unexpected or incorrect behavior with those programs. For more information about
this usage, see Developing and Porting C and C++ Applications on AIX at
http://www.redbooks.ibm.com/abstracts/sg245674.html, section 2.3.3.

When you build a C or C++ program that uses the JNI Invocation API to create a
Java virtual machine, and calls Java code, use the -L option to do the following
tasks:
v Add /usr/lib and /lib to the list of directories that are searched for shared

objects. All programs need shared objects that are stored in these directories.
v Add lib_dir and lib_dir/j9vm to the list of directories that are searched for

shared objects. These directories contain the Java SDK shared libraries. You also
want to link with libjvm.so (by using the -ljvm option). Add lib_dir and
lib_dir/j9vm to the list of directories that are searched for shared objects.

For example, this code builds a C program (invAPITest.c) that uses the JNI
Invocation API:
cc_r -q64 -I install_dir/include
-o invAPITest
-L/usr/lib
-L/lib
-L lib_dir/j9vm
-L lib_dir
-ljvm invAPITest.c

When you run a C or C++ program that uses the JNI Invocation API to run Java
classes, ensure that the class path is set up correctly to enable the JVM to find your
class files. If you modify the Java boot class path, include the SDK files that are
necessary to run your applications.

To determine whether a C or C++ program that is using the JNI Invocation API
was built with the -bM:UR option, use the following command:

dump -X64 -ov <program name>

The following output is generated:
>dump -X64 -ov <program name>

Object Module Header
Sections Symbol Ptr # Symbols Opt Hdr Len Flags

4 0x0001a728 1305 120 0x1002
Flags=(EXEC DYNLOAD DEP_SYSTEM)
Timestamp = "14 Oct 03:26:43 2005"
Magic = 0x1f7 (64-bit XCOFF)

Optional Header
Tsize Dsize Bsize Tstart Dstart
0x000127f8 0x00001b80 0x00000470 0x1000001f8 0x1100009f0

SNloader SNentry SNtext SNtoc SNdata
0x0004 0x0002 0x0001 0x0002 0x0002

TXTalign DATAalign TOC vstamp entry
0x0005 0x0003 0x110002158 0x0001 0x110002040

50 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.ibm.com/redbooks
http://www.redbooks.ibm.com/abstracts/sg245674.html

maxSTACK maxDATA SNbss magic modtype
0x00000000 0x00000000 0x0003 0x010b UR

If the modtype is not UR, you can use the LDR_CNTRL environment variable to make
programs behave as though they were compiled with the -bM:UR binder option. For
example:
export LDR_CNTRL=USERREGS

If you need to specify multiple options with LDR_CNTRL, separate those options with
the @ symbol.

Java threads that are created by the SDK use the POSIX pthreads model that is
supported on AIX. Currently, this approach is on a 1-to-1 mapping with the kernel
threads. When you develop a JNI program, you must run with a 1-to-1 thread
model and system contention scope if you create pthreads in your own program.
You can control this behavior by using the following environment setting:
export AIXTHREAD_SCOPE=S

Another option is to preset the thread's scope attribute to PTHREAD_SCOPE_SYSTEM by
using the AIX pthread_attr_setscope function when the thread is created.

You can store native methods as follows:

Shared object
A shared object is a single object file that has the SRE (Shared REusable)
bit set in the XCOFF header. The SRE bit tells the linker that this file is
linked dynamically. These files typically have a name of the form
<filename>.o, but they can also be named lib<name>.a to allow the linker to
search for them with the -lname option; but these are not archive library
files.

Shared library
A shared library is an "ar" format archive library in which one or more of
the archive members is a shared object. Note that this library can also
contain non-shared object files that are statically linked. A shared library
has the name in the form lib<name>.a. This form allows the linker to
search for libraries with the -lname option.

Programs can also link dynamically to shared libraries and shared objects, for
example by using the dlopen() family of subroutines. The SDK links in this way
when it loads native libraries (for example, System.load(), System.loadLibrary(),
Runtime.getRuntime().load(), Runtime.getRuntime().loadLibrary()).

For information about dlopen, see dlopen Subroutine.

For information about AIX loading and linking mechanisms, see AIX Linking and
Loading Mechanisms.

To load an AIX shared library, make a call to:
System.loadLibrary("<library>(<member>)")

where <library> is the name of the shared library archive and <member> is the
name of an archive member. For example:
System.loadLibrary("libShared.a(libSample.o)")

Chapter 5. Developing Java applications 51

http://www.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.basetrf1/dlopen.htm
http://public.dhe.ibm.com/software/dw/aix/es-aix_ll.pdf
http://public.dhe.ibm.com/software/dw/aix/es-aix_ll.pdf

Note: To ensure that dynamic linking of native libraries works successfully you
can, optionally, implement the lifecycle functions JNI_Onload() and
JNI_OnUnload() in the library. If you have implemented JNI_Onload(), the native
library must export it otherwise it is not visible to the runtime, and the JVM
assumes that the library requires only the JNI version JNI_VERSION_1.1. If
JNI_OnUnload() has been implemented, it must also be exported. If JNI_Onload()
is implemented and exported, then the latest JNI version is returned; for example,
JNI_VERSION_1.8.

Example of using AIX shared libraries
This example takes you through the process of using native shared libraries with a
Java application on AIX.

Procedure
1. Create a sample application, Sample.java.

public class Sample
{

public native void printFromNative();

public static void main(String[] args)
{

Sample sample = new Sample();
sample.printFromNative();

}

static
{

String sharedLibrary = "libShared.a(libSample.o)";
try
{

System.loadLibrary(sharedLibrary);
}
catch (Exception e)
{

System.out.println("ERROR: Unable to load " + sharedLibrary);
e.printStackTrace();

}
}

}

2. Compile Sample.java.
javac Sample.java

3. Use javah to create a header file for the native code.
javah Sample

4. Create a file called Sample.c.
#include <stdio.h>
#include "Sample.h"

JNIEXPORT void JNICALL Java_Sample_printFromNative(JNIEnv * env, jobject obj)
{

printf("Printing from native\n");
}

5. Compile Sample.c into libSample.o.
cc_r -bM:SRE -bnoentry -bexpall -I install_dir/include Sample.c
-o libSample.o -q64

6. Create an archive shared library libShared.a.
ar -X64 -v -q libShared.a libSample.o

7. Run the Sample class.
LIBPATH=. java Sample

52 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

or
java -Djava.library.path=. Sample

The program will output:
Printing from native

Results

You should now be able to use the same framework to access native shared
libraries from Java applications.

Support for thread-level recovery of blocked connectors
Four new IBM-specific SDK classes have been added to the com.ibm.jvm package
to support the thread-level recovery of Blocked connectors. The new classes are
packaged in core.jar.

These classes allow you to unblock threads that have become blocked on
networking or synchronization calls. If an application does not use these classes, it
must end the whole process, rather than interrupting an individual blocked thread.

The classes are:

public interface InterruptibleContext
Defines two methods, isBlocked() and unblock(). The other three classes
implement InterruptibleContext.

public class InterruptibleLockContext
A utility class for interrupting synchronization calls.

public class InterruptibleIOContext
A utility class for interrupting network calls.

public class InterruptibleThread
A utility class that extends java.lang.Thread, to allow wrapping of interruptible
methods. It uses instances of InterruptibleLockContext and
InterruptibleIOContext to perform the required isBlocked() and unblock()
methods depending on whether a synchronization or networking operation is
blocking the thread.

Both InterruptibleLockContext and InterruptibleIOContext work by referencing the
current thread. Therefore if you do not use InterruptibleThread, you must provide
your own class that extends java.lang.Thread, to use these new classes.

API documentation to support the package containing these classes is available
here: API documentation

Configuring large page memory allocation
You can enable large page support, on systems that support it, by starting Java
with the -Xlp option.

About this task

Large page usage is primarily intended to provide performance improvements to
applications that allocate a great deal of memory and frequently access that
memory. The large page performance improvements are a result of the reduced

Chapter 5. Developing Java applications 53

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.api.60.doc/api_overview.dita

number of misses in the Translation Lookaside Buffer (TLB). The TLB maps a
larger virtual storage area range and thus causes this improvement.

AIX requires special configuration to enable large pages. For more information
about configuring AIX support for large pages, see

AIX 6.1
Large pages

AIX 7.1
Large pages

The SDK supports the use of large pages only to back the Java object heap shared
memory segments. The JVM uses shmget() with the SHM_LGPG and SHM_PIN
flags to allocate large pages. The -Xlp option replaces the environment variable
IBM_JAVA_LARGE_PAGE_SIZE, which is now ignored if set.

For the JVM to use large pages, your system must have an adequate number of
contiguous large pages available. If large pages cannot be allocated, even when
enough pages are available, possibly the large pages are not contiguous.

For more information about the -Xlp options, see “JVM command-line options” on
page 98.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.
Related concepts:
“System resource limits and the ulimit command” on page 30
The operating system provides ways of limiting the amount of resource that can be
used. Limits are set for each user, but are applied separately to each process that is
running for that user. These limits can affect Java applications, for example if
certain limits are too low, the system might not be able to generate a complete Java
dump file.

CORBA support
The Java Platform, Standard Edition (JSE) supports, at a minimum, the
specifications that are defined in the compliance document from Oracle. In some
cases, the IBM JSE ORB supports more recent versions of the specifications.

The minimum specifications supported are defined in the Official Specifications for
CORBA support in Java SE 6: http://docs.oracle.com/javase/6/docs/api/org/
omg/CORBA/doc-files/compliance.html.

Support for GIOP 1.2

This SDK supports all versions of GIOP, as defined by chapters 13 and 15 of the
CORBA 2.3.1 specification, OMG document formal/99-10-07.

http://www.omg.org/cgi-bin/doc?formal/99-10-07

Bidirectional GIOP is not supported.

54 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/large_page_ovw.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.performance/large_page_ovw.htm
http://docs.oracle.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://docs.oracle.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07

Support for Portable Interceptors

This SDK supports Portable Interceptors, as defined by the OMG in the document
ptc/01–03–04, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/01–03-04

Portable Interceptors are hooks into the ORB that ORB services can use to intercept
the normal flow of execution of the ORB.

Support for Interoperable Naming Service

This SDK supports the Interoperable Naming Service, as defined by the OMG in
the document ptc/00-08-07, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/00-08-07

The default port that is used by the Transient Name Server (the tnameserv
command), when no ORBInitialPort parameter is given, has changed from 900 to
2809, which is the port number that is registered with the IANA (Internet Assigned
Number Authority) for a CORBA Naming Service. Programs that depend on this
default might have to be updated to work with this version.

The initial context that is returned from the Transient Name Server is now an
org.omg.CosNaming.NamingContextExt. Existing programs that narrow the
reference to a context org.omg.CosNaming.NamingContext still work, and do not
need to be recompiled.

The ORB supports the -ORBInitRef and -ORBDefaultInitRef parameters that are
defined by the Interoperable Naming Service specification, and the
ORB::string_to_object operation now supports the ObjectURL string formats
(corbaloc: and corbaname:) that are defined by the Interoperable Naming Service
specification.

The OMG specifies a method ORB::register_initial_reference to register a service
with the Interoperable Naming Service. However, this method is not available in
the Oracle Java Core API at this release. Programs that have to register a service in
the current version must invoke this method on the IBM internal ORB
implementation class. For example, to register a service “MyService”:
((com.ibm.CORBA.iiop.ORB)orb).register_initial_reference("MyService",
serviceRef);

Where orb is an instance of org.omg.CORBA.ORB, which is returned from
ORB.init(), and serviceRef is a CORBA Object, which is connected to the ORB.
This mechanism is an interim one, and is not compatible with future versions or
portable to non-IBM ORBs.

System properties for tracing the ORB
A runtime debug feature provides improved serviceability. You might find it useful
for problem diagnosis or it might be requested by IBM service personnel.

Tracing Properties

com.ibm.CORBA.Debug=true|fine|finer|finest
Turns on ORB tracing.

Chapter 5. Developing Java applications 55

|

http://www.omg.org/cgi-bin/doc?ptc/01-03-04
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

com.ibm.CORBA.CommTrace=true
Adds GIOP messages (sent and received) to the trace.

com.ibm.CORBA.Debug.Output=<file>
Specify the trace output file. By default, this is of the form
orbtrc.DDMMYYYY.HHmm.SS.txt.

Example of ORB tracing

For example, to trace events and formatted GIOP messages from the command
line, type:
java -Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true <myapp>

Limitations

Do not enable tracing for normal operation, because it might cause performance
degradation. Even if you have switched off tracing, FFDC (First Failure Data
Capture) is still working, so serious errors are reported. If a debug output file is
generated, examine it to check on the problem. For example, the server might have
stopped without performing an ORB.shutdown().

The content and format of the trace output might vary from version to version.

System properties for tuning the ORB
The ORB can be tuned to work well with your specific network. The properties
required to tune the ORB are described here.

com.ibm.CORBA.FragmentSize=<size in bytes>
Used to control GIOP 1.2 fragmentation. The default size is 1024 bytes.

To disable fragmentation, set the fragment size to 0 bytes:
java -Dcom.ibm.CORBA.FragmentSize=0 <myapp>

com.ibm.CORBA.RequestTimeout=<time in seconds>
Sets the maximum time to wait for a CORBA Request. By default the ORB
waits indefinitely. Do not set the timeout too low to avoid connections ending
unnecessarily.

com.ibm.CORBA.LocateRequestTimeout=<time in seconds>
Set the maximum time to wait for a CORBA LocateRequest. By default the
ORB waits indefinitely.

com.ibm.CORBA.ListenerPort=<port number>
Set the port for the ORB to read incoming requests on. If this property is set,
the ORB starts listening as soon as it is initialized. Otherwise, it starts listening
only when required.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made, which might result
in a SecurityException. If your program uses any of these methods, ensure that it is
granted the necessary permissions.

56 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Table 5. Methods affected when running with Java SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA. Request invoke java.net.SocketPermission
connect

org.omg.CORBA. Request send_deferred java.net.SocketPermission
connect

org.omg.CORBA. Request send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

ORB implementation classes
A list of the ORB implementation classes.

The ORB implementation classes in this release are:
v org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
v org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
v javax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.UtilDelegateImpl
v javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
v javax.rmi.CORBA.PortableRemoteObjectClass

=com.ibm.rmi.javax.rmi.PortableRemoteObject

These are the default values, and you are advised not to set these properties or
refer to the implementation classes directly. For portability, make references only to
the CORBA API classes, and not to the implementation. These values might be
changed in future releases.

RMI over IIOP
Java Remote Method Invocation (RMI) provides a simple mechanism for
distributed Java programming. RMI over IIOP (RMI-IIOP) uses the Common
Object Request Broker Architecture (CORBA) standard Internet Inter-ORB Protocol
(IIOP) to extend the base Java RMI to perform communication. This allows direct
interaction with any other CORBA Object Request Brokers (ORBs), whether they
were implemented in Java or another programming language.

The following documentation is available:

Chapter 5. Developing Java applications 57

v The RMI-IIOP Programmer's Guide is an introduction to writing RMI-IIOP
programs.

v The Java Language to IDL Mapping document is a detailed technical specification
of RMI-IIOP: http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf.

Implementing the Connection Handler Pool for RMI
Thread pooling for RMI Connection Handlers is not enabled by default.

About this task

To enable the connection pooling implemented at the RMI TCPTransport level, set
the option
-Dsun.rmi.transport.tcp.connectionPool=true

This version of the Runtime Environment does not have a setting that you can use
to limit the number of threads in the connection pool.

Enhanced BigDecimal
From Java 5.0, the IBM BigDecimal class has been adopted by Oracle as
java.math.BigDecimal. The com.ibm.math.BigDecimal class is reserved for possible
future use by IBM and is currently deprecated. Migrate existing Java code to use
java.math.BigDecimal.

The new java.math.BigDecimal uses the same methods as both the previous
java.math.BigDecimal and com.ibm.math.BigDecimal. Existing code using
java.math.BigDecimal continues to work correctly. The two classes do not serialize.

To migrate existing Java code to use the java.math.BigDecimal class, change the
import statement at the start of your .java file from: import com.ibm.math.*; to
import java.math.*;.

AIX native threads
From AIX 5.3 onwards, programs can set the priority of system contention scope
threads. Calls to java.lang.Thread.setPriority() will change the priority of Java
threads running on AIX 5.3.

For more information about AIX 5.3 thread scheduling, see:

http://www.ibm.com/support/knowledgecenter/ssw_aix_53/
com.ibm.aix.genprogc/doc/genprogc/threads_sched.htm

JNDI
A unified interface to the naming and directory services is provided. This interface
is called the Java Naming and Directory Interface (JNDI).

These naming and directory services are supported by JNDI:
v Lightweight Directory Access Protocol (LDAP)
v Corba Object Services (COS) Naming Service
v RMI Registry
v File system

58 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf
http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.genprogc/doc/genprogc/threads_sched.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_53/com.ibm.aix.genprogc/doc/genprogc/threads_sched.htm

v Domain Name Service (DNS)

Support for XToolkit
XToolkit is included by default. You need XToolkit when using the SWT_AWT
bridge in Eclipse to build an application that uses both SWT and Swing.

Restriction: Motif is no longer supported and will be removed in a later release.

Related links:
v An example of integrating Swing into Eclipse RCPs: http://eclipsezone.com/

eclipse/forums/t45697.html
v Reference Information in the Eclipse information center: http://help.eclipse.org/

kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/
swt/awt/SWT_AWT.html

v Set up information is available on the Oracle Corporation Web site:
http://docs.oracle.com/javase/6/docs/technotes/guides/awt/1.5/xawt.html

Support for the Java Attach API
Your application can connect to another “target” virtual machine using the Java
Attach API. Your application can then load an agent application into the target
virtual machine, for example to perform tasks such as monitoring status. Support
for the Java Attach API was added in Java 6 SR 6.

Code for agent applications, such as JMX agents or JVMTI agents, is normally
loaded during virtual machine startup by specifying special startup parameters.
Requiring startup parameters might not be convenient for using agents on
applications that are already running, such as WebSphere Application Servers. You
can use the Java Attach API to load an agent at any time, by specifying the process
ID of the target virtual machine. The Attach API capability is sometimes called the
“late attach” capability.

Support for the Attach API is enabled by default for Java 6 SR 6 and later.

Security considerations

Security for the Java Attach API is handled by POSIX file permissions.

The Java Attach API creates files and directories in a common directory.

The key security features of the Java Attach API are:
v A process using the Java Attach API must be owned by the same UNIX user ID

as the target process. This constraint ensures that only the target process owner
or root can attach other applications to the target process.

v The common directory uses the sticky bit to prevent a user from deleting or
replacing a subdirectory belonging to another user. To preserve the security of
this mechanism, set the ownership of the common directory to ROOT. This
directory will contain files such as _attachlock, _master, and _notifier, which
are used only for synchronization. These files can be owned by any user, and
must have read and write permission. However, you can remove execute
permission on these files, if present. The files are empty and will be re-created
automatically if deleted.

Chapter 5. Developing Java applications 59

http://eclipsezone.com/eclipse/forums/t45697.html
http://eclipsezone.com/eclipse/forums/t45697.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://docs.oracle.com/javase/6/docs/technotes/guides/awt/1.5/xawt.html

v The files in the subdirectory for a process, with the exception of a lock file, are
accessible only by the owner of a process. The subdirectory has owner read,
write, and execute permissions plus group and world execute permissions. In
this directory, read and write access are restricted to the owner only, except for
the attachNotificationSync file, which must have world and group write
permissions. This exception does not affect security because the file is used
exclusively for synchronization and is never written to or read.

v Information about the target process can be written and read only by the owner.
v Java 5 SR10 allowed users in the same group to access to each others' processes.

This capability was removed in later versions.

You must secure access to the Java Attach API capability to ensure that only
authorized users or processes can connect to another virtual machine. If you do not
intend to use the Java Attach API capability, disable this feature using a Java
system property. Set the com.ibm.tools.attach.enable system property to the
value no; for example:
-Dcom.ibm.tools.attach.enable=no

The Attach API can be enabled by setting the com.ibm.tools.attach.enable system
property to the value yes; for example:
-Dcom.ibm.tools.attach.enable=yes

Using the Java Attach API

By default, the target virtual machine is identified by its process ID. To use a
different target, change the system property com.ibm.tools.attach.id; for example:
-Dcom.ibm.tools.attach.id=<process_ID>

The target process also has a human-readable “display name”. By default, the
display name is the command line used to start Java. To change the default display
name, use the com.ibm.tools.attach.displayName system property. The ID and
display name cannot be changed after the application has started.

The Attach API creates working files in a common directory, which by default is
called .com_ibm_tools_attach and is created in the system temporary directory.
The system property java.io.tmpdir holds the value of the system temporary
directory. On non-Windows systems, the system temporary directory is typically
/tmp.

You can specify a different common directory from the default, by using the
following Java system property:
-Dcom.ibm.tools.attach.directory=directory_name

This system property causes the specified directory, directory_name, to be used as
the common directory. If the directory does not already exist, it is created, however
the parent directory must already exist. For example, the following system
property creates a common directory called myattachapidir in the usr directory.
The usr directory must already exist.
-Dcom.ibm.tools.attach.directory=/usr/myattachapidir

The common directory must be located on a local drive; specifying a network
mounted file system might result in incorrect behavior.

60 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

If your Java application ends abnormally, for example, following a crash or a
SIGKILL signal, the process subdirectory is not deleted. The Java VM detects and
removes obsolete subdirectories where possible. The subdirectory can also be
deleted by the owning user ID.

On heavily loaded system, applications might experience timeouts when
attempting to connect to target applications. The default timeout is 120 seconds.
Use the com.ibm.tools.attach.timeout system property to specify a different
timeout value in milliseconds. For example, to timeout after 60 seconds:
-Dcom.ibm.tools.attach.timeout=60000

A timeout value of zero indicates an indefinite wait.

For JMX applications, you can disable authentication by editing the
<JAVA_HOME>/jre/lib/management/management.properties file. Set the following
properties to disable authentication in JMX:
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

Problems with the Attach API result in one of the following exceptions:
v com.ibm.tools.attach.AgentLoadException

v com.ibm.tools.attach.AgentInitializationException

v com.ibm.tools.attach.AgentNotSupportedException

v java.io.IOException

A useful reference for information about the Attach API can be found at
http://docs.oracle.com/javase/6/docs/technotes/guides/attach/index.html. The
IBM implementation of the Attach API is equivalent to the Oracle Corporation
implementation. However, the IBM implementation cannot be used to attach to, or
accept attach requests from, non-IBM virtual machines. To use the attach API to
attach to target processes from your application, you must add the "tools.jar"
library to the application classpath. This library is not required for the target
processes to accept attach requests.

Chapter 5. Developing Java applications 61

http://docs.oracle.com/javase/6/docs/technotes/guides/attach/index.html

62 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 6. Plug-in, Applet Viewer and Web Start

The Java plug-in is used to run Java applications in the browser. The appletviewer
is used to test applications designed to be run in a browser. Java Web Start is used
to deploy desktop Java applications over a network, and provides a mechanism for
keeping them up-to-date.

Using the Java plug-in
The Java plug-in is a web browser plug-in. You use the Java plug-in to run applets
in the browser.

Allow enough time for applets to finish loading, otherwise your browser might
seem to “stop”. For example, if you click Back and then click Forward while an
applet is loading, the HTML pages might be unable to load.

The Java plug-in is documented at: http://docs.oracle.com/javase/6/docs/
technotes/guides/jweb/applet/applet_dev_guide.html.

Supported browsers
The Java plug-in supports the following browsers: Mozilla Firefox.

Table 6. Browsers supported by the Java plug-in on 64-bit AIX

Browser Supported Versions

Firefox 1.7, 2.0, 3.5, and 3.6. Available at http://www.ibm.com/
servers/aix/browsers/.

Installing the Java plug-in
To install the Java plug-in, symbolically link it to the plug-in directory for your
browser.

The Java plug-in is based on the Mozilla Open JVM Integration initiative, which is
used with most Mozilla products and derivatives, including Firefox.

You must symbolically link the plug-in, rather than copy it, so that the browser
and plug-in can locate the JVM.

Follow these steps to make the Java plug-in available to Mozilla Firefox users:
1. Log in as root user.
2. Change to the Firefox plug-in directory.

cd /usr/local/mozilla-firefox/plugins/

Note: The directory name is different for different Linux distributions.
3. Create a symbolic link to the plug-in. For Firefox 1.7, use the command:

ln -s /opt/ibm/java-<arch>-60/jre/plugin/<arch>/ns7/libjavaplugin_oji.so .

Where <arch> is the architecture of your system. For Firefox 3.x, use the
command:
ln -s /opt/ibm/java-<arch>-60/jre/lib/<arch>/libnpjp2.so .

© Copyright IBM Corp. 2003, 2016 63

http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_dev_guide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_dev_guide.html
http://www.ibm.com/servers/aix/browsers/
http://www.ibm.com/servers/aix/browsers/
http://www-archive.mozilla.org/oji/

Changing the properties of the Java Plug-in
You can change the properties of the Java Plug-in from the control panel, which
can be run as a stand-alone Java application.

About this task

To start this Java application, run the script:
/usr/java6_64/jre/bin/ControlPanel

Common Document Object Model (DOM) support
Because of limitations in particular browsers, you might not be able to implement
all the functions of the org.w3c.dom.html package.

One of the following errors is thrown:
v sun.plugin.dom.exception.InvalidStateException
v sun.plugin.dom.exception.NotSupportedException

Using DBCS parameters
The Java plug-in supports double-byte characters (for example, Chinese Traditional
BIG-5, Korean, and Japanese) as parameters for the tags <APPLET>, <OBJECT>,
and <EMBED>. You must select the correct character encoding for your HTML
document so that the Java plug-in can parse the parameter.

About this task

Specify character encoding for your HTML document by using the <META> tag in
the <HEAD> section like this:
<meta http-equiv="Content-Type" content="text/html; charset=big5">

This example tells the browser to use the Chinese BIG-5 character encoding to
parse the HTML file.

Working with applets
With the Applet Viewer, you can run one or more applets that are called by
reference in a Web page (HTML file) by using the <APPLET> tag. The Applet
Viewer finds the <APPLET> tags in the HTML file and runs the applets, in
separate windows, as specified by the tags.

Because the Applet Viewer is for viewing applets, it cannot display a whole Web
page that contains many HTML tags. It parses only the <APPLET> tags and no
other HTML on the Web page.

Running and debugging applets with the Applet Viewer
Use the following commands to run and debug an applet with the Applet Viewer.

Procedure
v To run an applet with the Applet Viewer, enter the following command:

appletviewer <name>.

<name> is one of the following options:
– The file name of an HTML file that calls an applet.
– The URL of a Web page that calls an applet.

64 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

For example, to start the Applet Viewer on an HTML file that calls an applet,
type at a shell prompt:

appletviewer $HOME/<filename>.html

Where filename is the name of the HTML file.
To start the Applet Viewer on a Web page, type at a shell prompt:
appletviewer http://mywebpage.com/demo/applets/MyApplet/example1.html

The Applet Viewer does not recognize the charset option of the <META> tag. If
the file that the Applet Viewer loads is not encoded as the system default, an
I/O exception might occur. To avoid the exception, use the -encoding option
when you run appletviewer. For example:
appletviewer -encoding JISAutoDetect sample.html

v To debug an applet with the Applet Viewer, use the debug parameter with the
appletviewer command.
For example:
>
cd demo/applets/TicTacToe
../../../bin/appletviewer -debug example1.html

You can find documentation about how to debug applets using the Applet
Viewer at the Oracle Web site: http://docs.oracle.com/javase/6/docs/
technotes/guides/plugin/developer_guide/debugger.html

Java Applet Viewer and the classpath
If you use the Applet Viewer to run an applet that is in the CLASSPATH, you might
get an AccessControlException in Swing. Because the CLASSPATH implicitly contains
the current directory ".", this exception might occur if you run the Java Plug-in in
the same directory that the applet class itself is in.

To work around this problem, ensure that:
v No CLASSPATH references exist to the applet that you are attempting to run in the

Java Plug-in or the appletviewer.
v You are not running the applet from the same directory that the class is in.

Using Web Start
Java Web Start is used for Java application deployment.

With Web Start, you can start and manage applications directly from the Web.
Applications are cached to minimize installation times. Applications are
automatically upgraded when new versions become available.

Web Start supports these command-line arguments documented at
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
developersguide/syntax.html#resources:
v -verbose
v -version
v -showversion
v -help
v -X
v -ea
v -enableassertions
v -da

Chapter 6. Plug-in, Applet Viewer and Web Start 65

http://docs.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/debugger.html
http://docs.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/debugger.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html#resources
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html#resources

v -disableassertions
v -esa
v -enablesystemassertions
v -dsa
v -disablesystemassertions
v -Xint
v -Xnoclassgc
v -Xdebug
v -Xfuture
v -Xrs
v -Xms
v -Xmx
v -Xss

Web Start also supports -Xgcpolicy to set the garbage collection policy.

From service refresh 10, the Autodownload option in the Java Control Panel is set
to Always by default. This option enables a user without administration privileges
to download the JRE from the location specified in the JNLP file.

For more information about Web Start, see:
v http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

and
v http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/index.html.

For more information about deploying applications, see:
v http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/

index.html.

Running Web Start
Web Start can be run from a Web page or the command line. Web Start
applications are stored in the Java Application Cache.

About this task

You can start Web Start in a number of different ways.

Procedure
v Select a link on a Web page that refers to a .jnlp file. If your browser does not

have the correct association to run Web Start applications, select the
/usr/java6_64/jre/bin/javaws command from the Open/Save window to start
the Web Start application.

v At a shell prompt, type:
javaws <URL>

Where <URL> is the location of a .jnlp file.
v If you have used Java Web Start to open the application in the past, use the Java

Application Cache Viewer. At a shell prompt, type:
/usr/java6_64/jre/bin/javaws -viewer

All Java Web Start applications are stored in the Java Application Cache. An
application is downloaded only if the latest version is not in the cache.

66 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/index.html

WebStart Secure Static Versioning
Static versioning allows Web Start applications to request a specific JVM version on
which those applications will run. Because static versioning also allows
applications to exploit old security vulnerabilities on systems that have been
upgraded to a new JVM, Secure Static Versioning (SSV) is now used by default.

With SSV, the user is warned before running any unsigned Web Start application
that requests a specific JVM, if the requested JVM is installed. Signed applications
and applications that request the latest version of the JVM run as usual.

You can disable SSV by setting the deployment.javaws.ssv.enabled property in the
deployment.properties file to false.

Distributing Java applications
Java applications typically consist of class, resource, and data files.

When you distribute a Java application, your software package probably consists of
the following parts:
v Your own class, resource, and data files
v AIX Runtime Environment (optional)
v An installation procedure or program

To run your application, a user needs the Runtime Environment for AIX. The SDK
for AIX software contains a Runtime Environment. However, you cannot assume
that your users have the SDK for AIX software installed.

Your application can either make the SDK for AIX a prerequisite or include a
version of the SDK that is specifically for the purpose of redistribution. The SDK
for AIX license does not allow you to redistribute any of the SDK files installed in
/usr/java6_64/ by installp. You can redistribute the SDK files in the j664redist.tar
or j664redist.tar.gz files (after viewing and agreeing to the associated online license)
available from the AIX Java Web site: http://www.ibm.com/developerworks/java/
jdk/aix/. Click the Download and service information link near the end of the
page and follow the links to the Java download page.

Chapter 6. Plug-in, Applet Viewer and Web Start 67

http://www.ibm.com/developerworks/java/jdk/aix/
http://www.ibm.com/developerworks/java/jdk/aix/

68 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 7. Class data sharing between JVMs

Class data sharing enables multiple JVMs to share a single space in memory.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
memory-mapped cache file on disk. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is deleted.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

The format of classes stored in the shared classes cache is changed in this release at
service refresh 13. As a result, there is a different shared cache generation number,
which causes the JVM to create a new shared classes cache, rather than re-creating
or reusing an existing cache. To save space, all existing shared caches should be
removed unless they are in use by an earlier release of IBM SDK, Java Technology
Edition, Version 6. For more information about deleting a shared classes cache, see
“Class data sharing command-line options” on page 71.

Overview of class data sharing
Class data sharing provides a method of reducing memory footprint and
improving JVM start time. Java 6 provides new and improved features in cache
management, isolation, and performance.

Enabling class data sharing

Enable class data sharing by using the -Xshareclasses option when starting a
JVM. The JVM connects to an existing cache or creates a new cache if one does not
exist.

All bootstrap and application classes loaded by the JVM are shared by default.
Custom class loaders share classes automatically if they extend the application
class loader. Otherwise, they must use the Java Helper API provided with the JVM
to access the cache. See “Adapting custom class loaders to share classes” on page
79.

The JVM can also store ahead-of-time (AOT) compiled code in the cache for certain
methods to improve the startup time of subsequent JVMs. The AOT compiled code
is not shared between JVMs, but is cached to reduce compilation time when the
JVM starts. The amount of AOT code stored in the cache is determined
heuristically. You cannot control which methods get stored in the cache. You can
set maximum and minimum limits on the amount of cache space used for AOT
code, or you can disable AOT caching completely. See “Class data sharing
command-line options” on page 71 for more information.

© Copyright IBM Corp. 2003, 2016 69

|
|
|
|
|
|
|

Cache access

A JVM can access a cache with either read/write or read-only access. Any JVM
connected to a cache with read/write access can update the cache. Any number of
JVMs can concurrently read from the cache, even while another JVM is writing to
it.

You must take care if runtime bytecode modification is being used. See “Runtime
bytecode modification” on page 77 for more information.

Dynamic updating of the cache

The shared class cache persists beyond the lifetime of any JVM. Therefore, the
cache is updated dynamically to reflect any modifications that might have been
made to JARs or classes on the file system. The dynamic updating makes the cache
independent of the application using it.

Cache security

Access to the shared class cache is limited by operating system permissions and
Java security permissions. The shared class cache is created with user read/write
access by default unless the groupAccess command-line suboption is used, in
which case the access is read/write for user and groups.

Service refresh 16, fix pack 2 and later: When a process attempts to access a shared
class cache, the virtual machine grants or denies access based on the user ID of the
process and the creator of the cache as follows:
v Access is granted to the user that created the cache.
v Access is granted to any other user that is in the same group as the cache

creator, but only if the -Xshareclasses:groupAccess option is specified on the
command line.

v Access is denied in all other cases. For example, even if the cache has read
permission for all, access is denied unless one of the previous points also
applies.

Note: These checks are not run for shared cache utility options such as
-Xshareclasses:printStats, -Xshareclasses:destroy, or
-Xshareclasses:destroyAll.

Only a class loader that has registered to share class data can update the shared
class cache.

The cache memory is protected against accidental or deliberate corruption using
memory page protection. This protection is not an absolute guarantee against
corruption because the JVM must unprotect pages to write to them. The only way
to guarantee that a cache cannot be modified is to open it read-only.

If a Java SecurityManager is installed, classloaders, excluding the default bootstrap,
application, and extension class loaders, must be granted permission to share
classes. Grant permission by adding SharedClassPermission lines to the
java.policy file. See “Using SharedClassPermission” on page 78 for more
information. The RuntimePermission createClassLoader restricts the creation of
new class loaders and therefore also restricts access to the cache.

70 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|

|

|
|
|

|
|
|

|
|
|

|

Cache lifespan

Multiple caches can exist on a system and you specify them by name as a
suboption to the -Xshareclasses command. A JVM can connect to only one cache
at any one time.

You can override the default cache size on startup using -Xscmx<n><size>. This size
is then fixed for the lifetime of the cache. Caches exist until they are explicitly
deleted using a suboption to the -Xshareclasses command or the cache file is
deleted manually.

Cache utilities

All cache utilities are suboptions to the -Xshareclasses command. See “Class data
sharing command-line options” or use -Xshareclasses:help to see a list of
available suboptions.

Class data sharing command-line options
Class data sharing and the cache management utilities are controlled using
command-line options to the Java technology launcher.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

-Xscmaxaot<size>
Sets the maximum number of bytes in the cache that can be used for AOT
data. Use this option to ensure that a certain amount of cache space is
available for non-AOT data. By default, the maximum limit for AOT data is
the amount of free space in the cache. The value of this option should not be
smaller than the value of -Xscminaot and must not be larger than the value of
-Xscmx.

-Xscminaot<size>
Sets the minimum number of bytes in the cache to reserve for AOT data. By
default, no space is reserved for AOT data, although AOT data is written to
the cache until the cache is full or the -Xscmaxaot limit is reached. The value of
this option must not exceed the value of -Xscmx or -Xscmaxaot. The value of
-Xscminaot must always be considerably less than the total cache size because
AOT data can be created only for cached classes. If the value of -Xscminaot is
equal to the value of -Xscmx, no class data or AOT data is stored because AOT
data must be associated with a class in the cache.

-Xscmx<size>
Specifies cache size. This option applies only if a cache is being created and no
cache of the same name exists. The default cache size is platform-dependent.
You can find out the size value being used by adding -verbose:sizes as a
command-line argument. The minimum cache size is 4 KB. The maximum
cache size is also platform-dependent. (See “Cache size limits” on page 77.)

-Xshareclasses:<suboption>[,<suboption>...]
Enables class data sharing. Can take a number of suboptions, some of which
are cache utilities. Cache utilities perform the required operation on the
specified cache, without starting the VM. You can combine multiple
suboptions, separated by commas, but the cache utilities are mutually

Chapter 7. Class data sharing between JVMs 71

exclusive. When running cache utilities, the message Could not create the
Java virtual machine is expected. Cache utilities do not create the virtual
machine.

Some cache utilities can work with caches from previous Java versions or
caches that are created by JVMs with different bit-widths. These caches are
referred to as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

help
Lists all the command-line suboptions.

name=<name>
Connects to a cache of a given name, creating the cache if it does not
already exist. Also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. %u in the cache name inserts the
current user name. You can specify “%g” in the cache name to insert the
current group name.

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources. The user must have sufficient
permissions in <directory>. The directory must not be on an NFS mount for
persistent caches.The JVM writes persistent cache files directly into the
directory specified. Persistent cache files can be safely moved and deleted
from the file system. Non-persistent caches are stored in shared memory
and have control files that describe the location of the memory. Control
files are stored in a javasharedresources subdirectory of the cacheDir
specified. Do not move or delete control files in this directory. The
listAllCaches utility, the destroyAll utility, and the expire suboption
work only in the scope of a given cacheDir.

Note: From service refresh 16, fix pack 2: If you specify this option,
persistent caches are created with read/write permission for the user,
read-only permission for others, and read-only or read/write permission
for groups depending on whether you also specify the
-Xshareclasses:groupAccess option. Otherwise, persistent caches are
created with the same permissions as non-persistent caches: read/write
permission for the user, and read/write permission for the group
depending on whether you also specify the -Xshareclasses:groupAccess
option.

cacheDirPerm=<permission>
Sets UNIX-style permissions when creating a cache directory. <permission>
must be a number in the ranges 0700 - 0777 or 1700 - 1777. If <permission>
is not valid, the JVM terminates with an appropriate error message.

The permissions that are specified by this suboption are used only when
creating a new cache directory. If the cache directory already exists, this
suboption is ignored and the cache directory permissions are not changed.

If you set this suboption to 0000, the default directory permissions are
used. If you set this suboption to 1000, the machine default directory
permissions are used, but the sticky bit is enabled.

If the cache directory is the platform default directory,
/tmp/javasharedresources, the cacheDirPerm suboption is ignored and the

72 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|
|
|
|
|
|
|

cache directory permissions are set to 777.If you do not set the
cacheDirPerm suboption, permissions for both new and existing cache
directories are set to 777, for compatibility with earlier Java technology
versions.

readonly
Opens an existing cache with read-only permissions. The Java virtual
machine does not create a new cache with this suboption. Opening a cache
read-only prevents the VM from making any updates to the cache. If you
specify this suboption, the VM can connect to caches that were created by
other users or groups without requiring write access. However, from
service refresh 16, fix pack 2, this access is permitted only if the cache was
created by using the -Xshareclasses:cacheDir option to specify a directory
with appropriate permissions. If you do not use the
-Xshareclasses:cacheDir option, the cache is created with default
permissions, which do not permit access by other users or groups.

By default, this suboption is not specified.

persistent
Uses a persistent cache. The cache is created on disk, which persists
beyond operating system restarts. Non-persistent and persistent caches can
have the same name. You must always use the persistent suboption when
running utilities such as destroy on a persistent cache. You must set the
CORE_MMAP environment variable to yes when using a persistent cache.

nonpersistent (default)
Uses a non-persistent cache. The cache is created in shared memory, which
is lost when the operating system shuts down. Non-persistent and
persistent caches can have the same name.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. Group access can be set only when permitted by the operating
system umask setting. The default is user access only.

From service refresh 16, fix pack 2: If a user creates a cache by specifying
the groupAccess suboption, other users in the same group must also
specify this suboption to be granted access to the same cache.

verbose
Enables verbose output, which provides overall status on the shared class
cache and more detailed error messages.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code generated at all for a small application. You can disable AOT
caching by using the noaot suboption.

verboseIO
Gives detailed output on the cache I/O activity, listing information on
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is usual to see many failed requests;
this behavior is expected for the class loader hierarchy.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

Chapter 7. Class data sharing between JVMs 73

|
|
|
|
|
|

|
|
|

silent
Turns off all shared classes messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

none
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor that is chosen by the user; for
example, “myModification1”. This option partitions the cache, so that only
JVMs that use context myModification1 can share the same classes. For
instance, if you run HelloWorld with a modification context and then run
it again with a different modification context, all classes are stored twice in
the cache. For more information, see “Runtime bytecode modification” on
page 77.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. Can be added to the end of a command line as -Xshareclasses:reset.

destroy (Utility option)
Destroys a cache specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down, and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down, and the user has sufficient permissions.

Note: On z/OS, when the destroyAll option is invoked from a 31-bit JVM,
64-bit caches are not destroyed. Similarly, when the destroyAll option is
invoked from a 64-bit JVM, 31-bit caches are not destroyed. The following
message is displayed:
JVMSHRC735I: Use a nn-bit JVM to perform the requested operation on the
nn-bit shared cache \"cachename\" as the nn-bit JVM
cannot verify that the shared memory was created by the JVM.

expire=<time in minutes>
Destroys all caches that have been unused for the time that is specified
before loading shared classes. This option is not a utility option because it
does not cause the JVM to exit.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified

74 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage is
displayed for each cache.

printStats (Utility option)
Displays summary information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused. For more information, see printStats utility.

printAllStats (Utility option)
Displays detailed information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. Every class is listed in
chronological order, with a reference to the location from which it was
loaded. AOT code for class methods is also listed.

For more information, see printAllStats utility.

mprotect=[all | default | none]
By default, the memory pages that contain the cache are always protected,
unless a specific page is being updated. This protection helps prevent
accidental or deliberate corruption to the cache. The cache header is not
protected by default because this protection has a performance cost.
Specifying all ensures that all the cache pages are protected, including the
header. Specifying none disables the page.

Note: Specifying all has a negative impact on performance. You should
specify all only for problem diagnosis, and not for production.

If you use the –Xshareclasses:nonpersistent option, set the environment
variable MPROTECT_SHM to ON before you start the JVM. If you do not
set this environment variable, the -Xshareclasses:mprotect option is
ignored, whether you specify a value for the option or accept the default
value, and no page protection occurs when you use a nonpersistent cache.

noBootclasspath
Prevents storage of classes that are loaded by the bootstrap class loader in
the shared classes cache. Can be used with the SharedClassURLFilter API
to control exactly which classes get cached. For more information about
shared class filtering, see Using the SharedClassHelper API.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function.

noaot
Disables caching of AOT code. AOT code already in the shared data cache
can be loaded.

Creating, populating, monitoring, and deleting a cache
An overview of the lifecycle of a shared class data cache, including examples of
the cache management utilities.

To enable class data sharing, add -Xshareclasses[:name=<name>] to your
application command line.

Chapter 7. Class data sharing between JVMs 75

The Java virtual machine (VM) either connects to an existing cache of the given
name or creates a new cache of that name. If a new cache is created, it is
populated with all bootstrap and application classes that are being loaded until the
cache becomes full. If two or more VMs are started concurrently, they populate the
cache concurrently.

To check that the cache is created, run java -Xshareclasses:listAllCaches. To see
how many classes and how much class data is being shared, run java
-Xshareclasses:[name=<name>],printStats. You can run these utilities after the
application VM ends or in another command window.

For more feedback on cache usage while the VM is running, use the verbose
suboption. For example, java -Xshareclasses:[name=<name>],verbose.

To see classes that are being loaded from the cache or stored in the cache, add
-Xshareclasses:[name=<name>],verboseIO to your command line when you run
your application.

Caches can be deleted if they contain many stale classes or if the cache is full and
you want to create a bigger cache. To delete a cache, run java
-Xshareclasses:[name=<name>],destroy. If you want to delete a 64-bit
non-compressed references cache, run java
-Xshareclasses:[name=<name>],destroy -Xnocompressedrefs.

You should tune the cache size for your specific application because the default is
unlikely to be the optimum size. To determine the optimum cache size, specify a
large cache, by using -Xscmx. Then, run the application and use the printStats
option to determine how much class data is stored. Add a small amount to the
value shown in printStats for contingency. Because classes can be loaded at any
time during the lifetime of the VM, it is best to do this analysis after the
application ends. However, a full cache does not have a negative affect on the
performance or capability of any VMs connected to it. Therefore, you can choose a
cache size that is smaller than required.

If a cache becomes full, a message is displayed on the command line of any VMs
that are using the verbose suboption. All VMs sharing the full cache can then load
any further classes into their own process memory. Classes in a full cache can still
be shared, but a full cache is read-only and cannot be updated with new classes.

Performance and memory consumption
Class data sharing is particularly useful on systems that use more than one JVM
running similar code; the system benefits from reduced real storage consumption.
It is also useful on systems that frequently start and shut down JVMs, which
benefit from the improvement in startup time.

The processor and memory usage required to create and populate a new cache is
minimal. The JVM startup cost in time for a single JVM is typically between 0 and
5% slower compared with a system not using class data sharing, depending on
how many classes are loaded. JVM startup time improvement with a populated
cache is typically between 10% and 40% faster compared with a system not using
class data sharing, depending on the operating system and the number of classes
loaded. Multiple JVMs running concurrently show greater overall startup time
benefits.

76 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Duplicate classes are consolidated in the shared class cache. For example, class A
loaded from myClasses.jar and class A loaded from myOtherClasses.jar (with
identical content) is stored only once in the cache. The printAllStats utility shows
multiple entries for duplicated classes, with each entry pointing to the same class.

When you run your application with class data sharing, you can use the operating
system tools to see the reduction in virtual storage consumption.

Considerations and limitations of using class data sharing
Consider these factors when deploying class data sharing in a product and using
class data sharing in a development environment.

Cache size limits
The maximum theoretical cache size is 2 GB. The size of cache you can specify is
limited by the amount of physical memory and paging space available to the
system.

The cache for sharing classes is allocated using the System V IPC Shared memory
mechanism. You can change the default behavior using the
-Xshareclasses:persistent option, so that memory mapped files are created on
disk and remain when the operating system is restarted. For further information,
see the -Xshareclasses:persistent option in the topic “JVM command-line
options” on page 98.

Because the virtual address space of a process is shared between the shared classes
cache and the Java heap, if you increase the maximum size of the Java heap you
might reduce the size of the shared classes cache you can create.

The virtual address space available to the process is 32 TB.

JVMTI RetransformClasses() is unsupported
You cannot run RetransformClasses() on classes loaded from the shared class
cache.

The JVM might throw the exception UnmodifiableClassException if you attempt to
run RetransformClasses(). It does not work because class file bytes are not
available for classes loaded from the shared class cache. If you must use
RetransformClasses(), ensure that the classes to be transformed are not loaded from
the shared class cache, or disable the shared class cache feature.

Runtime bytecode modification
Any JVM using a JVM Tool Interface (JVMTI) agent that can modify bytecode data
must use the modified=<modified_context> suboption if it wants to share the
modified classes with another JVM.

The modified context is a user-specified descriptor that describes the type of
modification being performed. The modified context partitions the cache so that all
JVMs running under the same context share a partition.

This partitioning allows JVMs that are not using modified bytecode to safely share
a cache with those that are using modified bytecode. All JVMs using a given
modified context must modify bytecode in a predictable, repeatable manner for
each class, so that the modified classes stored in the cache have the expected

Chapter 7. Class data sharing between JVMs 77

modifications when they are loaded by another JVM. Any modification must be
predictable because classes loaded from the shared class cache cannot be modified
again by the agent.

If a JVMTI agent is used without a modification context, classes are still safely
shared by the JVM, but with a small affect on performance. Using a modification
context with a JVMTI agent avoids the need for extra checks and therefore has no
affect on performance. A custom ClassLoader that extends
java.net.URLClassLoader and modifies bytecode at load time without using JVMTI
automatically stores that modified bytecode in the cache, but the cache does not
treat the bytecode as modified. Any other VM sharing that cache loads the
modified classes. You can use the modified=<modification_context> suboption in the
same way as with JVMTI agents to partition modified bytecode in the cache. If a
custom ClassLoader needs to make unpredictable load-time modifications to
classes, that ClassLoader must not attempt to use class data sharing.

See Dealing with runtime bytecode modification for more detail on this topic.

Operating system limitations
You cannot share classes between 32-bit and 64-bit Java virtual machines (VM).
Temporary disk space must be available to hold cache information. The operating
system enforces cache permissions.

For operating systems that can run both 32-bit and 64-bit applications, class data
sharing is not allowed between 32-bit and 64-bit VMs. The listAllCaches
suboption lists 32-bit and 64-bit caches, depending on the address mode and
compressed references mode of the VM being used.

The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is stored in
/tmp/javasharedresources. If the identification information directory is deleted, the
VM cannot identify the shared classes on the system and must re-create the cache.
Use the ipcs command to view the memory segments that are used by a VM or
application.

Users running a Java VM must be in the same group to use a shared class cache.
The operating system enforces the permissions for accessing a shared class cache. If
you do not specify a cache name, the user name is appended to the default name
so that multiple users on the same system create their own caches.

Using SharedClassPermission
If a SecurityManager is being used with class data sharing and the running
application uses its own class loaders, you must grant these class loaders shared
class permissions before they can share classes.

You add shared class permissions to the java.policy file using the ClassLoader
class name (wildcards are permitted) and either “read”, “write”, or “read,write” to
determine the access granted. For example:
permission com.ibm.oti.shared.SharedClassPermission

"com.abc.customclassloaders.*", "read,write";

If a ClassLoader does not have the correct permissions, it is prevented from
sharing classes. You cannot change the permissions of the default bootstrap,
application, or extension class loaders.

78 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Adapting custom class loaders to share classes
Any class loader that extends java.net.URLClassLoader can share classes without
modification. You must adopt class loaders that do not extend
java.net.URLClassLoader to share class data.

You must grant all custom class loaders shared class permissions if a
SecurityManager is being used; see “Using SharedClassPermission” on page 78.
IBM provides several Java interfaces for various types of custom class loaders,
which allow the class loaders to find and store classes in the shared class cache.
These classes are in the com.ibm.oti.shared package.

The API documentation for this package is available here: API documentation

See Using the Java Helper API for more information about how to use these
interfaces.

Chapter 7. Class data sharing between JVMs 79

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.api.60.doc/api_overview.dita

80 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 8. Service and support for independent software
vendors

Contact points for service:

If you are entitled to services for the Program code pursuant to the IBM Solutions
Developer Program, contact the IBM Solutions Developer Program through your
usual method of access or on the Web at: http://www.ibm.com/partnerworld/.

If you have purchased a service contract (that is, the IBM Personal Systems
Support Line or equivalent service by country), the terms and conditions of that
service contract determine what services, if any, you are entitled to receive with
respect to the Program.

© Copyright IBM Corp. 2003, 2016 81

http://www.ibm.com/partnerworld/

82 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Chapter 9. Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate the IBM SDK, Java Technology Edition, Version 6
without a mouse, by using only the keyboard.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

Keyboard traversal of JComboBox components in Swing
If you traverse the drop-down list of a JComboBox component with the cursor
keys, the button or editable field of the JComboBox does not change value until an
item is selected. This is the correct behavior for this release and improves
accessibility and usability by ensuring that the keyboard traversal behavior is
consistent with mouse traversal behavior.

Web Start accessibility
From Version 5.0, Java Web Start contains several accessibility and usability
improvements, including better support for screen readers and improved keyboard
navigation.

You can use the command line to start a Java application that is enabled for Web
Start. To change preference options, you must edit a configuration file,
.java/.deployment/.deployment.properties in the user's home directory. Take a
backup before you edit this file. Not all of the preferences that can be set in the
Java Application Cache Viewer are available in the configuration file.

© Copyright IBM Corp. 2003, 2016 83

http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

84 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Appendix. Appendixes

Reference information.

Command-line options
You can specify the options on the command line while you are starting Java. They
override any relevant environment variables. For example, using -cp <dir1> with
the Java command completely overrides setting the environment variable
CLASSPATH=<dir2>.

This chapter provides the following information:
v “Specifying command-line options”
v “General command-line options” on page 86
v “System property command-line options” on page 87
v “JVM command-line options” on page 98
v “JIT and AOT command-line options” on page 114
v “Garbage Collector command-line options” on page 118

Specifying command-line options
Although the command line is the traditional way to specify command-line
options, you can also pass options to the Java virtual machine (VM) by using
options files and environment variables.

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use single or double quotation marks for command-line options only when
explicitly directed to do so. Single and double quotation marks have different
meanings on different platforms, operating systems, and shells. Do not use
'-X<option>' or "-X<option>". Instead, you must use -X<option>. For example, do
not use ’-Xmx500m’ and "-Xmx500m". Write this option as -Xmx500m.

At startup, the list of VM arguments is constructed in the following order, with the
lowest precedence first:
1. Environment variables that are described in ../com.ibm.java.doc.diagnostics.60/

diag/appendixes/env_var/env_jvm.dita are translated into command-line
options. For example, the following environment variable adds the parameter
-Xrs to the list of arguments:
export IBM_NOSIGHANDLER=<non_null_string>

2. The IBM_JAVA_OPTIONS environment variable. You can set command-line options
using this environment variable. The options that you specify with this
environment variable are added to the command line when a JVM starts in that
environment.
The environment variable can contain multiple blank-delimited argument
strings, but must not contain comments. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

© Copyright IBM Corp. 2003, 2016 85

Note: The environment variable JAVA_TOOLS_OPTIONS is equivalent to
IBM_JAVA_OPTIONS and is available for compatibility with JVMTI.

3. Certain options are created automatically by the JVM. These specify arguments
such as search paths and version information.

4. Options that are specified on the command line. For example:
java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

The Java launcher adds some automatically generated arguments to this list,
such as the names of the main class.

You can also use the -Xoptionsfile parameter to specify JVM options. This
parameter can be used on the command line, or as part of the IBM_JAVA_OPTIONS
environment variable. The contents of an option file are expanded in place during
startup. For more information about the structure and contents of this type of file,
see “-Xoptionsfile” on page 105.

To troubleshoot startup problems, you can check which options are used by a JVM.
Append the following command-line option, and inspect the Javadump file that is
generated:
-Xdump:java:events=vmstart

Here is an extract from a Javadump file that shows the options that are used:
....

2CIUSERARG -Xdump:java:file=/home/test_javacore.txt,events=vmstop
2CIUSERARG -Dtest.cmdlineOption=1
2CIUSERARG -XXallowvmshutdown:true
2CIUSERARG -Xoptionsfile=test1.test_options_file

....

General command-line options
Use these options to print help on assert-related options, set the search path for
application classes and resources, print a usage method, identify memory leaks
inside the JVM, print the product version and continue, enable verbose output, and
print the product version.

-cp, -classpath <directories and compressed or .jar files separated by : (;
on Windows)>

Sets the search path for application classes and resources. If -classpath and -cp
are not used, and the CLASSPATH environment variable is not set, the user
classpath is, by default, the current directory (.).

-help, -?
Prints a usage message.

-fullversion
Prints the build and version information for the JVM.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. These
options are available:

class
Writes an entry to stderr for each class that is loaded.

dynload
Provides detailed information as each bootstrap class is loaded by the JVM:
v The class name and package

86 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

v For class files that were in a .jar file, the name and directory path of the
.jar

v Details of the size of the class and the time taken to load the class

The data is written out to stderr. An example of the output on a Windows
platform follows:
<Loaded java/lang/String from C:\sdk\jre\lib\vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

gc Provide verbose garbage collection information.

init
Writes information to stderr describing JVM initialization and termination.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for
each thread.

-version
Prints the full build and version information for the JVM.

System property command-line options
Use the system property command-line options to set up your system.

-D<name>=<value>
Sets a system property.

-Dcom.ibm.CORBA.CommTrace
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.CORBA.CommTrace=true|false
When you set this option to true, every incoming and outgoing GIOP message
is sent to the trace log. You can set this property independently from
-Dcom.ibm.CORBA.Debug. Use this property if you want to look only at the flow
of information, and you do not want to debug the internal information. The
default value for this property is false.

Related reference:
“-Dcom.ibm.CORBA.Debug”
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.
“-Dcom.ibm.CORBA.Debug.Output” on page 88
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.

-Dcom.ibm.CORBA.Debug
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.

-Dcom.ibm.CORBA.Debug=value
Where value is one of the following options:

Appendix. Appendixes 87

false No output is produced. This option is the default value.

true Messages and traces for the entire ORB code flow

Note: If you use this property without specifying a value, tracing is enabled.
Related reference:
“-Dcom.ibm.CORBA.Debug.Output”
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.
“-Dcom.ibm.CORBA.CommTrace” on page 87
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.CORBA.Debug.Output
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.

-Dcom.ibm.CORBA.Debug.Output=filename
Where filename is the name you want to specify for your trace log. If this
property is not specified or the value of filename is empty, the file name
defaults to the following format:
orbtrc.DDMMYYYY.HHmm.SS.txt

Where:
v D = day
v M = month
v Y = year
v H = hour (24 hour format)
v M = minutes
v S = seconds

If the application or applet does not have the privilege that it requires to write
to a file, the trace entries go to stderr.

Related reference:
“-Dcom.ibm.CORBA.Debug” on page 87
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.
“-Dcom.ibm.CORBA.CommTrace” on page 87
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.dbgmalloc
This option provides memory allocation diagnostic information for class library
native code.

-Dcom.ibm.dbgmalloc=true
When an application is started with this option, a javadump records the
amount of memory allocated by the class library components. You can use this
option together with the -Xcheck:memory option to obtain information about
class library call sites and their allocation sizes. Enabling this option has an
impact on throughput performance. The information does not include
allocation information from Abstract Windows Toolkit (AWT), ZLIB data
compression library, and libwrapper ASCII to EBCDIC conversion library.

88 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Dcom.ibm.jsse2.renegotiate
If your Java application uses JSSE for secure communication, you can disable TLS
renegotiation by installing APAR IZ65239.

-Dcom.ibm.jsse2.renegotiate=[ALL | NONE | ABBREVIATED]

ALL Allow both abbreviated and unabbreviated (full) renegotiation
handshakes.

NONE
Allow no renegotiation handshakes. This value is the default setting.

ABBREVIATED
Allow only abbreviated renegotiation handshakes.

-Dcom.ibm.lang.management.verbose
Enables verbose information from java.lang.management operations to be written
to the output channel during VM operation.

-Dcom.ibm.lang.management.verbose
There are no options for this system property.

-Dcom.ibm.IgnoreMalformedInput
From Java 6 SR9, any invalid UTF8 or malformed byte sequences are replaced with
the standard unicode replacement character \uFFFD.

-Dcom.ibm.IgnoreMalformedInput=true
To retain the old behavior, where invalid UTF8 or malformed byte sequences
are ignored, set this system property to true.

-Dcom.ibm.streams.CloseFDWithStream
Determines whether the close() method of a stream object closes a native file
descriptor even if the descriptor is still in use by another stream object.

-Dcom.ibm.streams.CloseFDWithStream=[true | false]
Usually, you create a FileInputStream or FileOutputStream instance by passing
a String or a File object to the stream constructor method. Each stream then
has a separate file descriptor. However, you can also create a stream by using
an existing FileDescriptor instance, for example one that you obtain from a
RandomAccessFile instance, or another FileInputStream or FileOutputStream
instance. Multiple streams can then share the same file descriptor.

If you set this option to false, when you use the close() method of the stream,
the associated file descriptor is also closed only if it is not in use by any other
streams. If you set the option to true, the file descriptor is closed regardless of
any other streams that might still be using it.

The default setting is true.

Note: Before version 6 service refresh 14, the default behavior was to close the
file descriptor only when all the streams that were using it were also closed.
This system property exists so that you can revert to this previous default
behavior if necessary. This system property will be removed in a future release,
so you should adjust your applications to use the new default behavior before
you upgrade to a later release.

-Dcom.ibm.tools.attach.enable
Enable the Attach API for this application.

-Dcom.ibm.tools.attach.enable=yes
The Attach API allows your application to connect to a virtual machine. Your

Appendix. Appendixes 89

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

application can then load an agent application into the virtual machine. The
agent can be used to perform tasks such as monitoring the virtual machine
status.

-Dcom.ibm.UseCLDR16
This property reverts behavior to an earlier release.

-Dcom.ibm.UseCLDR16
From IBM SDK, Java Technology Edition, Version 6 service refresh 10, changes
are made to the locale translation files to make them consistent with Oracle
JDK 6. To understand the differences in detail, see http://www.ibm.com/
support/docview.wss?uid=swg21568667. Include the -Dcom.ibm.UseCLDR16
system property on the command-line to revert to the locale translation files
used in earlier releases.

-Dcom.ibm.xtq.processor.overrideSecureProcessing
This system property affects the XSLT processing of extension functions or
extension elements when Java security is enabled.

Purpose

From IBM SDK, Java Technology Edition, Version 6 service refresh 14, the use of
extension functions or extension elements is not allowed when Java security is
enabled. This change is introduced to enhance security. The system property can be
used to revert to the behavior in earlier releases.

Parameters

com.ibm.xtq.processor.overrideSecureProcessing=true
To revert to the behavior in earlier releases of the IBM SDK, set this system
property to true.

-Dcom.ibm.zipfile.closeinputstreams
The Java.util.zip.ZipFile class allows you to create InputStreams on files held in a
compressed archive.

-Dcom.ibm.zipfile.closeinputstreams=true
Under some conditions, using ZipFile.close() to close all InputStreams that
have been opened on the compressed archive might result in a
56-byte-per-InputStream native memory leak. Setting the
-Dcom.ibm.zipfile.closeinputstreams=true forces the JVM to track and close
InputStreams without the memory impact caused by retaining native-backed
objects. Native-backed objects are objects that are stored in native memory,
rather than the Java heap. By default, the value of this system property is not
enabled.

-Dfile.encoding
Use this property to define the file encoding that is required.

-Dfile.encoding=value
Where value defines the file encoding that is required.

By default the IBM GBK converter follows Unicode 3.0 standards. To force the
IBM GBK converter to follow Unicode 2.0 standards, use a value of bestfit936.

-Dibm.disableAltProcessor
This option stops the ALT-key, when pressed, from highlighting the first menu in
the active window of the user interface.

90 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|

|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21568667
http://www.ibm.com/support/docview.wss?uid=swg21568667

-Dibm.disableAltProcessor=true
Set this property on the command line to prevent the ALT-key from
highlighting the first menu in the active window.

Note: If your application uses a Windows Look and Feel
(com.sun.java.swing.plaf.windows.WindowsLookAndFeel), this option has no
effect.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path, which is
inserted between any value that is defined by -Xbootclasspath/p: and the
bootclass path. The bootclass path is either the default or the one that you
defined by using the -Xbootclasspath: option.

-Dibm.stream.nio
This option addresses the ordering of IO and NIO converters.

-Dibm.stream.nio=[true | false]
When this option is set to true, the NIO converters are used instead of the IO
converters. By default the IO converters are used.

-Djava.compiler
Disables the Java compiler by setting to NONE.

-Djava.compiler=[NONE | j9jit<vm_version>]
Enable JIT compilation by setting to j9jit<vm_version> (Equivalent to –Xjit).

-Djava.util.Arrays.useLegacyMergeSort
Changes the implementation of java.util.Collections.sort(list, comparator) in this
release.

The Java SE 6 implementation of java.util.Collections.sort(list, comparator) relies on
the Comparator function, which implements the conditions greater than, less than,
and equal. However, the Java SE 5.0 implementation of
java.util.Collections.sort(list, comparator) can accept the Comparator function,
which implements only the conditions greater than and less than. From IBM SDK,
Java Technology Edition, Version 6 service refresh 16 fix pack 1 onwards, you can
switch between the Java SE 5.0 and Java SE 6 implementation.

-Djava.util.Arrays.useLegacyMergeSort=[true | false]
Setting the value to true changes the Comparator function to the Java SE 5.0
implementation. The default for this setting is false.

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
Use this property to turn off an enhanced hashing algorithm for
javax.xml.namespace.QName.hashCode().

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0
From Java 6 SR11 an enhanced hashing algorithm is used for
javax.xml.namespace.QName.hashCode(). This algorithm can change the
iteration order of items returned from hash maps. For compatibility, you can
restore the earlier hashing algorithm by setting the system property
-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0.

Appendix. Appendixes 91

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

-Djdk.map.althashing.threshold
This system property controls the use of an enhanced hashing algorithm for
hashed maps.

-Djdk.map.althashing.threshold=value
This alternative hashing algorithm is used for string keys when a hashed data
structure has a capacity larger than value.

A value of 1 ensures that this algorithm is always used, regardless of the
hashed map capacity. A value of -1 prevents the use of this algorithm, which is
the default value.

The hashed map structures affected by this threshold are: java.util.HashMap,
java.util.Hashtable, java.util.LinkedHashMap, java.util.WeakHashMap, and
java.util.concurrent.ConcurrentHashMap.

The capacity of a hashed map is related to the number of entries in the map,
multiplied by the load factor. Because the capacity of a hashed map is rounded
up to the next power of two, setting the threshold to intermediate values has
no affect on behavior. For example, threshold values of 600, 700, and 1000 have
the same effect. However, values of 1023 and 1024 cause a difference in
behavior. For a more detailed description of the capacity and load factor, see
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html.

When entries are removed from a hashed map the capacity does not shrink.
Therefore, if the map ever exceeds the threshold to use alternative hashing for
Strings, the map always uses alternative hashing for Strings. This behavior
does not change, even if entries are later removed or the map is emptied using
clear().

The enhanced hashing algorithm is available from Java 6 SR11

-Djdk.xml.entityExpansionLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.

-Djdk.xml.entityExpansionLimit=value

where value is a positive integer. The default value is 64,000.

A value of 0 or a negative number sets no limit.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.entityExpansionLimit=value

Related reference:
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 93
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 94
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.

92 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

“-Djdk.xml.totalEntitySizeLimit” on page 96
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxGeneralEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

-Djdk.xml.maxGeneralEntitySizeLimit=value

Where value is the maximum size that is allowed for a general entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxGeneralEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxOccur”
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 94
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 96
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxOccur
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.

When building a grammar for a W3C XML schema, use this option to limit the
number of content model nodes that can be created when the schema defines
attributes that can occur multiple times.

Appendix. Appendixes 93

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

-Djdk.xml.maxOccur=value

Where value is a positive integer. The default value is 5,000.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxoccur=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxParameterEntitySizeLimit”
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 96
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxParameterEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

-Djdk.xml.maxParameterEntitySizeLimit=value

Where value is the maximum size that is allowed for a parameter entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxParameterEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.

94 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|

|
|
|

|
|
|

“-Djdk.xml.maxOccur” on page 93
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxXMLNameLimit”
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 96
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities”
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxXMLNameLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.

-Djdk.xml.maxXMLNameLimit=value

Where value is a positive integer.

A value of 0 or a negative number sets no limits. The default value is 0.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxXMLNameLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 93
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 94
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.resolveExternalEntities”
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.
“-Djdk.xml.totalEntitySizeLimit” on page 96
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.

-Djdk.xml.resolveExternalEntities
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.resolveExternalEntities=value

Appendix. Appendixes 95

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

Where value is boolean. The default value is true.

A value of false turns off the resolution of XML external entities.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.resolveExternalEntities=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 93
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxXMLNameLimit” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit”
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 94
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.

-Djdk.xml.totalEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.

-Djdk.xml.totalEntitySizeLimit=value

Where value is the collective size of all entities. The default value is 5x10^7 (50
000 000).

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.totalEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 92
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 93
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 93
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.

96 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

“-Djdk.xml.maxParameterEntitySizeLimit” on page 94
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.resolveExternalEntities” on page 95
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Dsun.awt.keepWorkingSetOnMinimize
The -Dsun.awt.keepWorkingSetOnMinimize=true system property stops the JVM
trimming an application when it is minimized.

-Dsun.awt.keepWorkingSetOnMinimize=true
When a Java application using the Abstract Windowing Toolkit (AWT) is
minimized, the default behavior is to “trim” the “working set”. The working
set is the application memory stored in RAM. Trimming means that the
working set is marked as being available for swapping out if the memory is
required by another application. The advantage of trimming is that memory is
available for other applications. The disadvantage is that a “trimmed”
application might experience a delay as the working set memory is brought
back into RAM.

The default behavior is to trim an application when it is minimized.

-Dsun.net.client.defaultConnectTimeout
Specifies the default value for the connect timeout for the protocol handlers used
by the java.net.URLConnection class.

-Dsun.net.client.defaultConnectTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

When a connection is made by an applet to a server and the server does not
respond properly, the applet might seem to hang. The delay might also cause
the browser to hang. The apparent hang occurs because there is no network
connection timeout. To avoid this problem, the Java Plug-in has added a
default value to the network timeout of 2 minutes for all HTTP connections.
You can override the default by setting this property.

-Dsun.net.client.defaultReadTimeout
Specifies the default value for the read timeout for the protocol handlers used by
the java.net.URLConnection class when reading from an input stream when a
connection is established to a resource.

-Dsun.net.client.defaultReadTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

-Dsun.nio.MaxDirectMemorySize
Limits the native memory size for nio Direct Byte Buffer objects to the value
specified.

-Dsun.nio.MaxDirectMemorySize=<value>
Specify <value> in bytes.

Appendix. Appendixes 97

|
|
|

|
|
|

|
|
|

-Dsun.reflect.inflationThreshold
Controls inflation from the JNI implementation of reflection to the Java
implementation of reflection.

When your application uses Java reflection, the JVM has two methods of accessing
the information on the class being reflected. It can use a JNI accessor, or a Java
bytecode accessor. If your application uses reflection extensively, you might want
to force the JVM to use the JNI accessor because the Java bytecode accessor can use
a significant amount of native memory.

-Dsun.reflect.inflationThreshold=<value>
Where a <value> sets the number of times to use the JNI accessor before the
JVM changes to use the Java bytecode accessor, a process that is known as
inflation. A value of 0 causes reflection never to inflate from the JNI accessor to
the Java bytecode accessor.

Note: The Oracle implementation of this system property is different. Setting
the value to 0 causes reflection to inflate from the JNI implementation of
reflection to the Java implementation of reflection after the first usage. If you
want to force the use of the Java implementation of reflection, use
-Dsun.reflect.noInflation=true.

-Dsun.rmi.transport.tcp.connectionPool
Enables thread pooling for the RMI ConnectionHandlers in the TCP transport layer
implementation.

-Dsun.rmi.transport.tcp.connectionPool=val
val is either true or a value that is not null.

-Dswing.useSystemFontSettings
This option addresses compatibility problems for Swing programs.

-Dswing.useSystemFontSettings=[false]
By default, Swing programs running with the Windows Look and Feel render
with the system font set by the user instead of a Java-defined font. As a result,
fonts differ from the fonts in earlier releases. This option addresses
compatibility problems like these for programs that depend on the old
behavior. By setting this option, v1.4.1 fonts and those of earlier releases are
the same for Swing programs running with the Windows Look and Feel.

JVM command-line options
Use these options to configure your JVM. The options prefixed with -X are
nonstandard.

Options that relate to the JIT are listed under “JIT and AOT command-line
options” on page 114. Options that relate to the Garbage Collector are listed under
“Garbage Collector command-line options” on page 118.

-X
Displays help on nonstandard options.

-X Displays help on nonstandard options.

-Xaggressive
Enables performance optimizations.

98 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Xaggressive
Enables performance optimizations that are expected to be the default in future
releases.

-Xargencoding
Include Unicode escape sequences in the argument list.

-Xargencoding
You can use the Unicode escape sequences in the argument list that you pass
to this option. To specify a Unicode character, use escape sequences in the form
\u####, where # is a hexadecimal digit (0 - 9, A to F).

-Xargencoding:utf8
Use utf8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

To specify a class that is called HelloWorld and use Unicode encoding for both
capital letters, specify this command:
java -Xargencoding ’\u0048ello\u0057orld’

-Xbootclasspath
Sets the search path for bootstrap classes and resources.

-Xbootclasspath:<directories and compressed or Java archive files separated
by : (; on Windows)>

The default is to search for bootstrap classes and resources in the internal VM
directories and .jar files.

-Xbootclasspath/a:

Appends to the end of the search path for bootstrap classes.

-Xbootclasspath/a:<directories and compressed or Java archive files
separated by : (; on Windows)>

Appends the specified directories, compressed files, or .jar files to the end of
the bootstrap class path. The default is to search for bootstrap classes and
resources in the internal VM directories and .jar files.

-Xbootclasspath/p:

Adds a prefix to the search path for bootstrap classes.

-Xbootclasspath/p:<directories and compressed or Java archive files
separated by : (; on Windows)>

Adds a prefix of the specified directories, compressed files, or Java archive files
to the front of the bootstrap class path. Do not deploy applications that use the
-Xbootclasspath: or the -Xbootclasspath/p: option to override a class in the
standard API. The reason is that such a deployment contravenes the Java 2
Runtime Environment binary code license. The default is to search for
bootstrap classes and resources in the internal VM directories and .jar files.

-Xcheck
You can use the -Xcheck option to run checks during JVM startup, such as memory
checks or checks on JNI functions.

-Xcheck:<option>
The options available are detailed in separate topics.

Appendix. Appendixes 99

-Xcheck:classpath:

Displays a warning message if an error is discovered in the class path.

-Xcheck:classpath
Checks the classpath and reports if an error is discovered; for example, a
missing directory or JAR file.

-Xcheck:gc:

Runs additional checks on garbage collection.

-Xcheck:gc[:<scan options>][:<verify options>][:<misc options>]
By default, no checks are made. See the output of -Xcheck:gc:help for more
information.

-Xcheck:jni:

Runs additional checks for JNI functions.

-Xcheck:jni[:help][:<option>=<value>]
This option is equivalent to -Xrunjnichk. By default, no checks are made.

-Xcheck:memory:

Identifies memory leaks inside the JVM.

-Xcheck:memory[:<option>]
Identifies memory leaks inside the JVM using strict checks that cause the JVM
to exit on failure. If no option is specified, all is used by default. The available
options are as follows:

all
Enables checking of all allocated and freed blocks on every free and
allocate call. This check of the heap is the most thorough. It typically
causes the JVM to exit on nearly all memory-related problems soon after
they are caused. This option has the greatest affect on performance.

callsite=<number of allocations>

Displays callsite information every <number of allocations>. De-allocations
are not counted. Callsite information is presented in a table with separate
information for each callsite. Statistics include:
v The number and size of allocation and free requests since the last report.
v The number of the allocation request responsible for the largest

allocation from each site.

Callsites are presented as sourcefile:linenumber for C code and assembly
function name for assembler code.

Callsites that do not provide callsite information are accumulated into an
"unknown" entry.

failat=<number of allocations>
Causes memory allocation to fail (return NULL) after <number of
allocations>. Setting <number of allocations> to 13 causes the 14th allocation
to return NULL. De-allocations are not counted. Use this option to ensure
that JVM code reliably handles allocation failures. This option is useful for
checking allocation site behavior rather than setting a specific allocation
limit.

100 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

ignoreUnknownBlocks
Ignores attempts to free memory that was not allocated using the
-Xcheck:memory tool. Instead, the -Xcheck:memory statistics that are
printed out at the end of a run indicates the number of “unknown” blocks
that were freed.

mprotect=<top|bottom>
Locks pages of memory on supported platforms, causing the program to
stop if padding before or after the allocated block is accessed for reads or
writes. An extra page is locked on each side of the block returned to the
user.

If you do not request an exact multiple of one page of memory, a region on
one side of your memory is not locked. The top and bottom options control
which side of the memory area is locked. top aligns your memory blocks
to the top of the page (lower address), so buffer underruns result in an
application failure. bottom aligns your memory blocks to the bottom of the
page (higher address) so buffer overruns result in an application failure.

Standard padding scans detect buffer underruns when using top and
buffer overruns when using bottom.

nofree
Keeps a list of blocks that are already used instead of freeing memory. This
list, and the list of currently allocated blocks, is checked for memory
corruption on every allocation and deallocation. Use this option to detect a
dangling pointer (a pointer that is "dereferenced" after its target memory is
freed). This option cannot be reliably used with long-running applications
(such as WebSphere Application Server), because “freed” memory is never
reused or released by the JVM.

noscan
Checks for blocks that are not freed. This option has little effect on
performance, but memory corruption is not detected. This option is
compatible only with subAllocator, callsite, and callsitesmall.

quick
Enables block padding only and is used to detect basic heap corruption.
Every allocated block is padded with sentinel bytes, which are verified on
every allocate and free. Block padding is faster than the default of checking
every block, but is not as effective.

skipto=<number of allocations>
Causes the program to check only on allocations that occur after <number
of allocations>. De-allocations are not counted. Use this option to speed up
JVM startup when early allocations are not causing the memory problem.
The JVM performs approximately 250+ allocations during startup.

subAllocator[=<size in MB>]
Allocates a dedicated and contiguous region of memory for all JVM
allocations. This option helps to determine if user JNI code or the JVM is
responsible for memory corruption. Corruption in the JVM subAllocator
heap suggests that the JVM is causing the problem; corruption in the
user-allocated memory suggests that user code is corrupting memory.
Typically, user and JVM allocated memory are interleaved.

zero
Newly allocated blocks are set to 0 instead of being filled with the
0xE7E7xxxxxxxxE7E7 pattern. Setting these blocks to 0 helps you to

Appendix. Appendixes 101

determine whether a callsite is expecting zeroed memory, in which case the
allocation request is followed by memset(pointer, 0, size).

Note: The -Xcheck:memory option cannot be used in the -Xoptionsfile.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompressedrefs
Enables the use of compressed references.

-Xcompressedrefs
(64-bit only) To disable compressed references, use the
-Xnocompressedreferences option. For more information, see Compressed
references.

Compressed references are disabled by default.

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

-Xdbg
Loads debugging libraries to support the remote debugging of applications.

-Xdbg:<options>
This option is deprecated in the IBM SDK, Java Technology Edition, Version 6.
By default, the debugging libraries are not loaded, and the VM instance is not
enabled for debug.

The preferred method to enable the debugger is -agentlib:jdwp=<options>. For
more information about using the Java debugger, see the IBM SDK, Java
Technology Edition, Version 6 user guide.

-Xdiagnosticscollector
Enables the Diagnostics Collector.

-Xdiagnosticscollector[:settings=<filename>]
See The Diagnostics Collector for more information. The settings option allows
you to specify a different Diagnostics Collector settings file to use instead of
the default dc.properties file in the JRE.

-Xdisablejavadump
Turns off Javadump generation on errors and signals.

-Xdisablejavadump
By default, Javadump generation is enabled.

-Xdump
Use the -Xdump option to add and remove dump agents for various JVM events,
update default dump settings (such as the dump name), and limit the number of
dumps that are produced.

-Xdump
See Using dump agents for more information.

102 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Xenableexplicitgc
This options tells the VM to trigger a garbage collection when a call is made to
System.gc().

-Xenableexplicitgc
Signals to the VM that calls to System.gc() trigger a garbage collection. This
option is enabled by default.

-Xfastresolve
Tune performance by improving the resolution time for classes.

-Xfastresolve<n>
This option is used to tune performance by improving the resolution time for
classes when the field count exceeds the threshold specified by <n>. If profiling
tools show significant costs in field resolution, change the threshold until the
costs are reduced. If you enable this option, additional memory is used when
the threshold is exceeded.

-Xfuture
Turns on strict class-file format checks.

-Xfuture
Use this flag when you are developing new code because stricter checks will
become the default in future releases. By default, strict format checks are
disabled.

-Xiss
Sets the initial stack size for Java threads.

-Xiss<size>
By default, the stack size is set to 2 KB. Use the -verbose:sizes option to
output the value that the VM is using.

-Xjarversion
Produces output information about the version of each .jar file.

-Xjarversion
Produces output information about the version of each .jar file in the class
path, the boot class path, and the extensions directory. Version information is
taken from the Implementation-Version and Build-Level properties in the
manifest of the .jar file.

Note: The -Xjarversion option cannot be used in the -Xoptionsfile.

-Xjni
Sets JNI options.

-Xjni:<suboptions>
You can use the following suboption with the -Xjni option:

-Xjni:arrayCacheMax=[<size in bytes>|unlimited]
Sets the maximum size of the array cache. The default size is 8096 bytes.

-Xlinenumbers
Displays line numbers in stack traces for debugging.

-Xlinenumbers
See also -Xnolinenumbers. By default, line numbers are on.

Appendix. Appendixes 103

-XlockReservation
Enables an optimization that presumes a monitor is owned by the thread that last
acquired it.

-XlockReservation
The optimization minimizes the runtime cost of acquiring and releasing a
monitor for a single thread if the monitor is rarely acquired by multiple
threads.

-Xlog
Enables message logging.

-Xlog

To prevent message logging, use the -Xlog:none option. By default, logging is
enabled. This option is available from Java 6 SR5. See JVM Messages.

-Xlp
Requests the JVM to allocate the Java object heap and JIT code cache memory with
large pages.

-Xlp[<size>]
AIX: Requests the JVM to allocate the Java object heap (the heap from which
Java objects are allocated) with large (16 MB) pages, if a size is not specified. If
large pages are not available, the Java object heap is allocated with the next
smaller page size that is supported by the system. AIX requires special
configuration to enable large pages. For more information about configuring
AIX support for large pages, see Large pages in the AIX product
documentation. The SDK supports the use of large pages only to back the Java
object heap shared memory segments. The JVM uses shmget() with the
SHM_LGPG and SHM_PIN flags to allocate large pages. The -Xlp option
replaces the environment variable IBM_JAVA_LARGE_PAGE_SIZE, which is now
ignored if set.

For more information, see “Configuring large page memory allocation” on
page 53.

All platforms: To obtain the large page sizes available and the current setting,
use the -verbose:sizes option. Note the current settings are the requested
sizes and not the sizes obtained. For object heap size information, check the
-verbose:gc output.

The JVM ends if there are insufficient operating system resources to satisfy the
request. However, an error message is not issued. This limitation and a
workaround for verifying the page size that is used can be found in Known
limitations.

-Xmso
Sets the initial stack size for operating system threads.

-Xmso<size>
The default value can be determined by running the command:
java -verbose:sizes

The maximum value for the stack size varies according to platform and
specific machine configuration. If you exceed the maximum value, a
java/lang/StackOverflowError message is reported.

-Xnoagent
Disables support for the old JDB debugger.

104 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/large_page_ovw.htm

-Xnoagent
Disables support for the old JDB debugger.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
technology classes that are no longer being used by the JVM. The default
behavior is as defined by -Xclassgc. Enabling this option is not recommended
except under the direction of the IBM support team. The reason is the option
can cause unlimited native memory growth, leading to out-of-memory errors.

-Xnocompressedrefs
Disables the use of compressed references.

-Xnocompressedrefs
(64-bit only)

This option disables the use of compressed references.

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

To enable compressed references, use the -Xcompressedreferences option. For
more information, see Compressed references.

-Xnolinenumbers
Disables the line numbers for debugging.

-Xnolinenumbers
See also -Xlinenumbers. By default, line number are on.

-Xnosigcatch
Disables JVM signal handling code.

-Xnosigcatch
See also -Xsigcatch. By default, signal handling is enabled.

-Xnosigchain
Disables signal handler chaining.

-Xnosigchain
See also -Xsigchain. By default, the signal handler chaining is enabled.

-Xoptionsfile
Specifies a file that contains VM options and definitions.

-Xoptionsfile=<file>
where <file> contains options that are processed as if they had been entered
directly as command-line options. By default, a user option file is not used.

Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

The options file does not support these options:
v -assert

Appendix. Appendixes 105

v -fullversion

v -help

v -showversion

v -version

v -Xcompressedrefs

v -Xcheck:memory

v -Xjarversion

v -Xoptionsfile

Although you cannot use -Xoptionsfile recursively within an options file, you
can use -Xoptionsfile multiple times on the same command line to load more
than one options files.

Some options use quoted strings as parameters. Do not split quoted strings
over multiple lines using the forward slash line continuation character (\). The
Yen symbol (¥) is not supported as a line continuation character. For example,
the following example is not valid in an options file:
-Xevents=vmstop,exec="cmd /c \
echo %pid has finished."

The following example is valid in an options file:
-Xevents=vmstop, \
exec="cmd /c echo %pid has finished."

Related information:
“Specifying command-line options” on page 85
Although the command line is the traditional way to specify command-line
options, you can also pass options to the Java virtual machine (VM) by using
options files and environment variables.
TITLE, GPINFO, and ENVINFO sections

-Xoss
Sets the maximum Java stack size for any thread.

-Xoss<size>
Recognized but deprecated. Use -Xss and -Xmso instead. The maximum value
for the stack size varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

-Xrdbginfo
Loads the remote debug information server with the specified host and port.

-Xrdbginfo:<host>:<port>
By default, the remote debug information server is disabled.

-Xrs
Disables signal handling in the JVM.

-Xrs
Setting -Xrs prevents the Java run time environment from handling any
internally or externally generated signals such as SIGSEGV and SIGABRT. Any
signals that are raised are handled by the default operating system handlers.
Disabling signal handling in the JVM reduces performance by approximately
2-4%, depending on the application.

-Xrs:sync
On UNIX systems, this option disables signal handling in the JVM for

106 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

SIGSEGV, SIGFPE, SIGBUS, SIGILL, SIGTRAP, andSIGABRT signals.
However, the JVM still handles the SIGQUIT and SIGTERM signals, among
others. As with -Xrs, the use of -Xrs:sync reduces performance by
approximately 2-4%, depending on the application.

Note: Setting this option prevents dumps being generated by the JVM for signals
such as SIGSEGV and SIGABRT, because the JVM is no longer intercepting these
signals.

-Xrun
This option loads helper libraries, but has been superseded by the -agentlib
option.

-Xrun<library name>[:<options>]
This option has been superseded; use the -agentlib option instead. For more
information about -agentlib, see Using the JVMTI.

-Xrun loads helper libraries. To load multiple libraries, specify it more than
once on the command line. Examples of these libraries are:

-Xrunhprof[:help] | [:<option>=<value>, ...]
Performs heap, CPU, or monitor profiling.

-Xrunjdwp[:help] | [:<option>=<value>, ...]
Loads debugging libraries to support the remote debugging of
applications. This option is the same as -Xdbg.

-Xrunjnichk[:help] | [:<option>=<value>, ...]
Deprecated. Use -Xcheck:jni instead.

-Xscmx
Specifies cache size.

-Xscmx<size>
This option applies only if a cache is being created and no cache of the same
name exists. The default cache size is platform-dependent. You can find out the
size value being used by adding -verbose:sizes as a command-line argument.
Minimum cache size is 4 KB. Maximum cache size is platform-dependent. The
size of cache that you can specify is limited by the amount of physical memory
and paging space available to the system. The virtual address space of a
process is shared between the shared classes cache and the Java heap.
Increasing the maximum size of the Java heap reduces the size of the shared
classes cache that you can create.

-XselectiveDebug
Enables selective debugging.

-XselectiveDebug
Use the com.ibm.jvm.Debuggable annotation to mark classes and methods that
must be available for debugging. The JVM optimizes methods that do not need
debugging to provide better performance in a debugging environment. See the
User Guide for your platform for more information.

-Xshareclasses
Enables class sharing. This option can take a number of suboptions, some of which
are cache utilities.

-Xshareclasses:<suboptions>

Appendix. Appendixes 107

Cache utilities perform the required operation on the specified cache, without
starting the VM. You can combine multiple suboptions, separated by commas,
but the cache utilities are mutually exclusive.

Note: When running cache utilities, the message Could not create the Java
virtual machine is expected. Cache utilities do not create the virtual machine.
Some cache utilities can work with caches from previous Java versions or
caches that are created by JVMs with different bit-widths. These caches are
referred to as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources on Linux, AIX, z/OS, and IBM i.
You must have sufficient permissions in <directory>. For AIX, the directory
must not be on an NFS mount for persistent caches. The JVM writes
persistent cache files directly into the directory specified. Persistent cache
files can be safely moved and deleted from the file system. Nonpersistent
caches are stored in shared memory and have control files that describe the
location of the memory. Control files are stored in a javasharedresources
subdirectory of the cacheDir specified. Do not move or delete control files
in this directory. The listAllCaches utility, the destroyAll utility, and the
expire suboption work only in the scope of a given cacheDir.

Note: From service refresh 16, fix pack 2: If you specify this option,
persistent caches are created with read/write permission for the user,
read-only permission for others, and read-only or read/write permission
for groups depending on whether you also specify the
-Xshareclasses:groupAccess option. Otherwise, persistent caches are
created with the same permissions as non-persistent caches: read/write
permission for the user, and read/write permission for the group
depending on whether you also specify the -Xshareclasses:groupAccess
option.

cacheDirPerm=<permission>
Sets UNIX-style permissions when creating a cache directory. <permission>
must be an octal number in the ranges 0700 - 0777 or 1700 - 1777. If
<permission> is not valid, the JVM ends with an appropriate error message.

The permissions specified by this suboption are used only when creating a
new cache directory. If the cache directory already exists, this suboption is
ignored and the cache directory permissions are not changed.

If you set this suboption to 0000, the default directory permissions are
used. If you set this suboption to 1000, the machine default directory
permissions are used, but the sticky bit is enabled.If the cache directory is
the platform default directory, /tmp/javasharedresources, this suboption is
ignored and the cache directory permissions are set to 777. If you do not
set this suboption, the cache directory permissions are set to 777, for
compatibility with earlier Java versions.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function. See JVMTI redefinition and retransformation
of classes for more information.

destroy (Utility option)
Destroys a cache that is specified by the name, cacheDir, and nonpersistent

108 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|
|
|
|
|
|
|

suboptions. A cache can be destroyed only if all JVMs using it have shut
down and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down and the user has sufficient permissions.

expire=<time in minutes> (Utility option)
Destroys all caches that are unused for the time that is specified before
loading shared classes. This option is not a utility option because it does
not cause the JVM to exit.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. Group access can be set only when permitted by the operating
system umask setting. The default is user access only.

From service refresh 16, fix pack 2: If a user creates a cache by specifying
the groupAccess suboption, other users in the same group must also
specify this suboption to be granted access to the same cache.

help
Lists all the command-line options.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage, is
displayed for each cache.

mprotect=[default | all | none]
Where:
v default: By default, the memory pages that contain the cache are always

protected, unless a specific page is being updated. This protection helps
prevent accidental or deliberate corruption to the cache. The cache
header is not protected by default because this protection has a
performance cost.

v all: This option ensures that all the cache pages are protected, including
the header.

v none: Specifying this option disables the page protection.

Note: Specifying all has a negative impact on performance. You should
specify all only for problem diagnosis and not for production.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor chosen by the user; for example,
myModification1. This option partitions the cache, so that only JVMs using
context myModification1 can share the same classes. For instance, if you run
an application with a modification context and then run it again with a
different modification context, all classes are stored twice in the cache. See
Dealing with runtime bytecode modification for more information.

name=<name>
Connects to a cache of a given name, creating the cache if it does not exist.
This option is also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show

Appendix. Appendixes 109

|
|
|

which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. "%u" in the cache name inserts
the current user name. You can specify “%g” in the cache name to insert
the current group name.

noaot
Disables caching and loading of AOT code. AOT code already in the
shared data cache can be loaded.

noBootclasspath
Disables the storage of classes loaded by the bootstrap class loader in the
shared classes cache. Often used with the SharedClassURLFilter API to
control exactly which classes are cached. See Using the SharedClassHelper
API for more information about shared class filtering.

none
Added to the end of a command line, disables class data sharing. This
suboption overrides class sharing arguments found earlier on the
command line.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

nonpersistent (default for AIX and z/OS platforms)
Uses a nonpersistent cache. The cache is lost when the operating system
shuts down. Nonpersistent and persistent caches can have the same name.

persistent
Uses a persistent cache. The cache is created on disk, which persists
beyond operating system restarts. Nonpersistent and persistent caches can
have the same name. You must always use the persistent suboption when
running utilities such as destroy on a persistent cache. On AIX, you must
set the CORE_MMAP environment variable to yes when using a persistent
cache.

printAllStats (Utility option)
Displays detailed information about the contents of the cache that is
specified in the name=<name> suboption. If the name is not specified,
statistics are displayed about the default cache. Every class is listed in
chronological order with a reference to the location from which it was
loaded. See printAllStats utility for more information.

printStats (Utility option)
Displays summary information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused. See printStats utility for more information.

readonly
Opens an existing cache with read-only permissions. The Java virtual
machine does not create a new cache with this suboption. Opening a cache
read-only prevents the VM from making any updates to the cache. If you
specify this suboption, the VM can connect to caches that were created by
other users or groups without requiring write access. However, from

110 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

service refresh 16, fix pack 2, this access is permitted only if the cache was
created by using the -Xshareclasses:cacheDir option to specify a directory
with appropriate permissions. If you do not use the
-Xshareclasses:cacheDir option, the cache is created with default
permissions, which do not permit access by other users or groups.

By default, this suboption is not specified.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. This option can be added to the end of a command line as
-Xshareclasses:reset.

safemode
Forces the JVM to load all classes from disk and apply the modifications to
those classes (if applicable). For more information, see Using the safemode
option.

This suboption is deprecated in IBM SDK, Java Technology Edition,
Version 6.

silent
Disables all shared class messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

verbose
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy. The standard
option -verbose:class also enables class sharing verbose output if class
sharing is enabled.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code that is generated at all for a small application. You can disable
AOT caching using the noaot suboption. See the IBM JVM Messages Guide
for a list of the messages produced.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

verboseIO
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy.

-Xsigcatch
Enables VM signal handling code.

-Xsigcatch
See also -Xnosigcatch. By default, signal handling is enabled.

Appendix. Appendixes 111

|
|
|
|
|

-Xsigchain
Enables signal handler chaining.

-Xsigchain
See also -Xnosigchain. By default, signal handler chaining is enabled.

-Xss
Sets the maximum stack size for Java threads.

-Xss<size>
The default is 256 KB for 32-bit JVMs and 512 KB for 64-bit JVMs. The
maximum value varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

-Xssi
Sets the stack size increment for Java threads.

-Xssi<size>
When the stack for a Java thread becomes full it is increased in size by this
value until the maximum size (-Xss) is reached. The default is 16 KB.

-Xthr
-Xthr:<suboptions>

-Xthr:minimizeUserCPU
Minimizes user-mode CPU usage in thread synchronization where
possible. The reduction in CPU usage might be a trade-off in exchange for
decreased performance.

-XtlhPrefetch
Speculatively prefetches bytes in the thread local heap (TLH) ahead of the current
allocation pointer during object allocation.

-XtlhPrefetch
This option helps reduce the performance cost of subsequent allocations.

-Xtrace
Trace options.

-Xtrace[:help] | [:<option>=<value>, ...]
See Controlling the trace for more information.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xverify
Use this option to enable or disable the verifier.

-Xverify[:<option>]
With no parameters, enables the verifier, which is the default. Therefore, if
used on its own with no parameters, for example, -Xverify, this option does
nothing. Optional parameters are as follows:
v all - enable maximum verification
v none - disable the verifier
v remote - enables strict class-loading checks on remotely loaded classes

112 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|

|
|

The verifier is on by default and must be enabled for all production servers.
Running with the verifier off is not a supported configuration. If you
encounter problems and the verifier was turned off using -Xverify:none,
remove this option and try to reproduce the problem.

-Xzero
Enables reduction of the memory footprint of the Java runtime environment when
concurrently running multiple Java invocations.

-Xzero[:<option>]
-Xzero might not be appropriate for all types of applications because it
changes the implementation of java.util.ZipFile, which might cause extra
memory usage. -Xzero includes the optional parameters:
v j9zip - enables the j9zip sub option
v noj9zip - disables the j9zip sub option
v sharezip - enables the sharezip sub option
v nosharezip - disables the sharezip sub option
v none - disables all sub options
v describe - prints the sub options in effect

Because future versions might include more default options, -Xzero options are
used to specify the sub options that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all
.jar files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This suboption is not

a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap .jar files have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a map
of zip entry names to file positions used to quickly find entries in the .zip
file. You must enable -Xshareclasses to avoid a warning message. When
using the sharezip suboption, note that this suboption allows every opened
.zip file and .jar file to store the j9zip cache in shared memory, so you might
fill the shared memory when opening multiple new .zip files and .jar files.
The affected API is java.util.zip.ZipFile (superclass of
java.util.jar.JarFile). The .zip and .jar files do not have to be on a class
path.

The system property com.ibm.zero.version is defined, and has a current value
of 2. Although -Xzero is accepted on all platforms, support for the sub options
varies by platform:
v -Xzero with all other sub options are available only on Windows x86-32 and

Linux x86-32 platforms.

.

JVM -XX command-line options
JVM command-line options that are specified with -XX are not recommended for
casual use.

These options are subject to change without notice.

-XXallowvmshutdown
This option is provided as a workaround for customer applications that cannot
shut down cleanly, as described in APAR IZ59734.

Appendix. Appendixes 113

-XXallowvmshutdown:[false|true]
Customers who need this workaround should use -XXallowvmshutdown:false.
The default option is -XXallowvmshutdown:truefor Java 6 SR5 onwards.

-XX:codecachetotal
Use this option to set the maximum size limit for the JIT code cache.

-XX:codecachetotal=<size>
This option is an alias for the “-Xcodecachetotal” on page 115 option.

-XX:MaxDirectMemorySize
This option sets a limit on the amount of memory that can be reserved for all
Direct Byte Buffers.

-XX:MaxDirectMemorySize=<size>

Where <size> is the limit on memory that can be reserved for all Direct Byte
Buffers. If a value is set for this option, the sum of all Direct Byte Buffer sizes
cannot exceed the limit. After the limit is reached, a new Direct Byte Buffer can
be allocated only when enough old buffers are freed to provide enough space
to allocate the new buffer.

By default, the JVM does not set a limit on how much memory is reserved for
Direct Byte Buffers. A soft limit of 64 MB is set, which the JVM automatically
expands in 32 MB chunks, as required.

-XX:-StackTraceInThrowable
This option removes stack traces from exceptions.

-XX:-StackTraceInThrowable
By default, stack traces are available in exceptions. Including a stack trace in
exceptions requires walking the stack and that can affect performance.
Removing stack traces from exceptions can improve performance but can also
make problems harder to debug.

When this option is enabled, Throwable.getStackTrace() returns an empty array
and the stack trace is displayed when an uncaught exception occurs.
Thread.getStackTrace() and Thread.getAllStackTraces() are not affected by this
option.

-XX:[+|-]UseCompressedOops (64-bit only)
This option enables or disables compressed references in 64-bit JVMs, and is
provided to help when porting applications from the Oracle JVM to the IBM JVM.
This option might not be supported in subsequent releases.

-XX:[+|-]UseCompressedOops

The -XX:+UseCompressedOops option enables compressed references in 64-bit
JVMs. The -XX:+UseCompressedOops option is similar to specifying
-Xcompressedrefs, which is detailed in the topic “JVM command-line options”
on page 98.

The -XX:-UseCompressedOops option prevents the use of compressed references
in 64-bit JVMs.

JIT and AOT command-line options
Use these JIT and AOT compiler command-line options to control code
compilation.

114 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

For options that take a <size> parameter, suffix the number with “k” or “K” to
indicate kilobytes, “m” or “M” to indicate megabytes, or “g” or “G” to indicate
gigabytes.

For more information about JIT and AOT, see JIT and AOT problem determination.

-Xaot
Use this option to control the behavior of the AOT compiler.

-Xaot[:<parameter>=<value>, ...]
With no parameters, enables the AOT compiler. The AOT compiler is enabled
by default but is not active unless shared classes are enabled. Using this option
on its own has no effect. The following parameters are useful:

count=<n>
Where <n> is the number of times a method is called before it is compiled
or loaded from an existing shared class cache. For example, setting count=0
forces the AOT compiler to compile everything on first execution.

exclude=={<method>}
Where <method> is the Java method you want to exclude when AOT code
is compiled or loaded from the shared classes cache. You can use this
option if the method causes the program to fail.

limitFile=(<filename>,<m>,<n>)
Compile or load only the methods listed on lines <m> to <n> in the
specified limit file. Methods not listed in the limit file and methods listed
on lines outside the range are not compiled or loaded.

loadExclude=<methods>
Do not load methods beginning with <methods>.

loadLimit=<methods>
Load methods beginning with <methods> only.

loadLimitFile=(<filename>,<m>,<n>)
Load only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not loaded.

verbose
Reports information about the AOT and JIT compiler configuration and
method compilation.

-Xcodecache
This option is used to tune performance.

-Xcodecache<size>
This option sets the size of each block of memory that is allocated to store the
native code of compiled Java methods. By default, this size is selected
internally according to the processor architecture and the capability of your
system. The maximum value a user can specify is 32 MB. If you set a value
larger than 32 MB, the JIT ignores the input and sets the value to 32 MB.

Note: The JIT compiler might allocate more than one code cache for an
application. Use the -Xcodecachetotal option to set the maximum amount of
memory that is used by all code caches.

-Xcodecachetotal
Use this option to set the maximum size limit for the JIT code cache.

Appendix. Appendixes 115

|
|

-Xcodecachetotal<size>
See “JIT and AOT command-line options” on page 114 for more information
about the <size> parameter.

By default, the total size of the JIT code cache is determined by your operating
system, architecture, and the version of the IBM SDK that you are using.
Long-running, complex, server-type applications can fill the JIT code cache,
which can cause performance problems because not all of the important
methods can be JIT-compiled. Use the -Xcodecachetotal option to increase the
maximum code cache size beyond the default setting, to a setting that suits
your application.

The value that you specify is rounded up to a multiple of the code cache block
size, as specified by the “-Xcodecache” on page 115 option. If you specify a
value for the -Xcodecachetotal optoin that is smaller than the default setting,
that value is ignored.

The maximum size limits, for both the JIT code and data caches, that are in use
by the JVM are shown in Javadump output. Look for lines that begin with
1STSEGLIMIT. Use this information together with verbose JIT tracing to
determine suitable values for this option on your system. For example
Javadump output, see Storage Management (MEMINFO).

Related reference:
“-Xjit”
Use the JIT compiler command line option to produce verbose JIT trace output.
Related information:
Using Javadump

-Xint
This option makes the JVM use the Interpreter only, disabling the Just-In-Time (JIT)
and Ahead-Of-Time (AOT) compilers.

-Xint
By default, the JIT compiler is enabled. By default, the AOT compiler is
enabled, but is not used by the JVM unless shared classes are also enabled.

-Xjit
Use this option to control the behavior of the JIT compiler.

-Xjit[:<option>=<value>, ...]
The JIT compiler is enabled by default. Therefore, specifying -Xjit with no
options, has no effect. These options can be used to modify behavior:

count=<n>
Where <n> is the number of times a method is called before it is compiled.
For example, setting count=0 forces the JIT compiler to compile everything
on first execution.

exclude={<method>}
Excludes the specified method from compilation.

limitFile=(<filename>, <m>, <n>)
Compile only the methods that are listed on lines <m> to <n> in the
specified limit file. Methods that are not listed in the limit file and methods
that are listed on lines outside the range are not compiled.

optlevel=[noOpt | cold | warm | hot | veryHot | scorching]
Forces the JIT compiler to compile all methods at a specific optimization
level. Specifying optlevel might have an unexpected effect on
performance, including reduced overall performance.

116 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|

|

verbose[={compileStart|compileEnd}]
Reports information about the JIT and AOT compiler configuration and
method compilation.

The ={compileStart|compileEnd} option reports when the JIT starts to
compile a method, and when it ends.

vlog=<filename>
Sends verbose output to a file. If you do not specify this parameter, the
output is sent to the standard error output stream (STDERR).

Related information:
Diagnosing a JIT or AOT problem

-Xnoaot
This option turns off the AOT compiler and disables the use of AOT-compiled
code.

-Xnoaot
By default, the AOT compiler is enabled but is active only when shared classes
are also enabled. Using this option does not affect the JIT compiler.

-Xnojit
This option turns off the JIT compiler.

-Xnojit
By default, the JIT compiler is enabled. This option does not affect the AOT
compiler.

-Xquickstart
This option causes the JIT compiler to run with a subset of optimizations.

-Xquickstart
The effect is faster compilation times that improve startup time, but longer
running applications might run slower. When the AOT compiler is active (both
shared classes and AOT compilation enabled), -Xquickstart causes all methods
to be AOT compiled. The AOT compilation improves the startup time of
subsequent runs, but might reduce performance for longer running
applications. -Xquickstart can degrade performance if it is used with
long-running applications that contain hot methods. The implementation of
-Xquickstart is subject to change in future releases. By default, -Xquickstart
is disabled..

-XsamplingExpirationTime
Use this option to disable JIT sampling after a specified amount of time.

-XsamplingExpirationTime<time>
Disables the JIT sampling thread after <time> seconds. When the JIT sampling
thread is disabled, no processor cycles are used by an idle JVM.

-Xscmaxaot
When you create a shared classes cache, you can use this option to apply a
maximum number of bytes in the class cache that can be used for AOT data.

-Xscmaxaot<size>
This option is useful if you want a certain amount of cache space guaranteed
for non-AOT data. If this option is not specified, by default the maximum limit
for AOT data is the amount of free space in the cache. The value of this option
must not be smaller than the value of -Xscminaot and must not be larger than
the value of -Xscmx.

Appendix. Appendixes 117

-Xscminaot
When you create a shared classes cache, you can use this option to apply a
minimum number of bytes in the class cache to reserve for AOT data.

-Xscminaot<size>
If this option is not specified, no space is reserved for AOT data. However,
AOT data is still written to the cache until the cache is full or the -Xscmaxaot
limit is reached. The value of this option must not exceed the value of -Xscmx
or -Xscmaxaot. The value of -Xscminaot must always be considerably less than
the total cache size, because AOT data can be created only for cached classes. If
the value of -Xscminaot equals the value of -Xscmx, no class data or AOT data
can be stored.

Garbage Collector command-line options
Use these Garbage Collector command-line options to control garbage collection.

You might need to read Memory management to understand some of the
references that are given here.

The -verbose:gc option detailed in Verbose garbage collection logging is the main
diagnostic aid that is available for runtime analysis of the Garbage Collector.
However, additional command-line options are available that affect the behavior of
the Garbage Collector and might aid diagnostic data collection.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

For options that take a <percentage> parameter, use a number from 0 to 1, for
example, 50% is 0.5.

-Xalwaysclassgc
Always perform dynamic class unloading checks during global collection.

-Xalwaysclassgc
The default behavior is as defined by -Xclassgc.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactgc
Compacts on all garbage collections (system and global).

-Xcompactgc
The default (no compaction option specified) makes the GC compact based on
a series of triggers that attempt to compact only when it is beneficial to the
future performance of the JVM.

118 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Xconcurrentbackground
Specifies the number of low-priority background threads attached to assist the
mutator threads in concurrent mark.

-Xconcurrentbackground<number>
The default is 0 for Linux on z Systems™ and 1 on all other platforms.

-Xconcurrentlevel
Specifies the allocation "tax" rate.

-Xconcurrentlevel<number>
This option indicates the ratio between the amount of heap allocated and the
amount of heap marked. The default is 8.

-Xconcurrentslack
Attempts to keep the specified amount of the heap space free in concurrent
collectors by starting the concurrent operations earlier.

-Xconcurrentslack<size>
Using this option can sometimes alleviate pause time problems in concurrent
collectors at the cost of longer concurrent cycles, affecting total throughput.
The default value is 0, which is optimal for most applications.

-Xconmeter
This option determines the usage of which area, LOA (Large Object Area) or SOA
(Small Object Area), is metered and hence which allocations are taxed during
concurrent mark.

-Xconmeter:<soa | loa | dynamic>
Using -Xconmeter:soa (the default) applies the allocation tax to allocations
from the small object area (SOA). Using -Xconmeter:loa applies the allocation
tax to allocations from the large object area (LOA). If -Xconmeter:dynamic is
specified, the collector dynamically determines which area to meter based on
which area is exhausted first, whether it is the SOA or the LOA.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent in
the GC.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent
in the GC.

-Xdisableexplicitgc
Disables System.gc() calls.

-Xdisableexplicitgc

Many applications still make an excessive number of explicit calls to
System.gc() to request garbage collection. In many cases, these calls degrade
performance through premature garbage collection and compactions. However,
you cannot always remove the calls from the application.

The -Xdisableexplicitgc parameter allows the JVM to ignore these garbage
collection suggestions. Typically, system administrators use this parameter in
applications that show some benefit from its use.

By default, calls to System.gc() trigger a garbage collection.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

Appendix. Appendixes 119

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xenableexcessivegc
If excessive time is spent in the GC, the option returns null for an allocate request
and thus causes an OutOfMemory exception to be thrown.

-Xenableexcessivegc

The OutOfMemory exception is thrown only when the heap has been fully
expanded and the time spent is making up at least 95%. This behavior is the
default.

You can control the percentage that triggers an excessive GC event with the
-Xgc:excessiveGCratio option. For more information, see “-Xgc.”

-Xenablestringconstantgc
Enables strings from the string intern table to be collected.

-Xenablestringconstantgc
This option is on by default.

-Xgc
Options that change the behavior of the Garbage Collector (GC). These options are
deprecated.

-Xgc:<excessiveGCratio | verbose | compact | nocompact |
scvNoAdaptiveTenure | scvTenureAge>

excessiveGCratio=value
Where value is a percentage. The default value is 95. This option can be
used only when -Xenableeexcessivegc is set. For more information,
see “-Xenableexcessivegc.”

scvNoAdaptiveTenure
This option turns off the adaptive tenure age in the generational
concurrent GC policy. The initial age that is set is maintained
throughout the run time of the Java virtual machine. See scvTenureAge.

scvTenureAge=<n>
This option sets the initial scavenger tenure age in the generational
concurrent GC policy. The range is 1 - 14 and the default value is 10.
For more information, see Tenure age.

Options verbose, compact, and nocompact are deprecated.

-Xgcpolicy
Controls the behavior of the Garbage Collector.

-Xgcpolicy:< gencon | optavgpause | optthruput | subpool (AIX, Linux and
IBM i on IBM POWER architecture, Linux and z/OS on zSeries) >

gencon
The generational concurrent (gencon) policy uses a concurrent mark phase
combined with generational garbage collection to help minimize the time
that is spent in any garbage collection pause. This policy is particularly
useful for applications with many short-lived objects, such as transactional
applications. Pause times can be significantly shorter than with the
optthruput policy, while still producing good throughput. Heap
fragmentation is also reduced.

120 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

optavgpause
The "optimize for pause time" (optavgpause) policy uses concurrent mark
and concurrent sweep phases. Pause times are shorter than with
optthruput, but application throughput is reduced because some garbage
collection work is taking place while the application is running. Consider
using this policy if you have a large heap size (available on 64-bit
platforms), because this policy limits the effect of increasing heap size on
the length of the garbage collection pause. However, if your application
uses many short-lived objects, the gencon policy might produce better
performance.

subpool
The subpool policy disables the concurrent mark phase, but employs an
improved object allocation algorithm to achieve better performance when
allocating objects on the heap. This algorithm is more suitable for multiple
processor systems, commonly 16 processors or more. Applications that
must scale on large systems might benefit from this policy. This policy is
available on AIX, Linux PPC and zSeries, z/OS, and i5/OS only.

optthruput
The "optimize for throughput" (optthruput) policy (default) disables the
concurrent mark phase. The application stops during global garbage
collection, so long pauses can occur. This configuration is typically used for
large-heap applications when high application throughput, rather than
short garbage collection pauses, is the main performance goal. If your
application cannot tolerate long garbage collection pauses, consider using
another policy, such as gencon.

-Xgcthreads
Sets the number of threads that the Garbage Collector uses for parallel operations.

-Xgcthreads<number>
The total number of GC threads is composed of one application thread with
the remainder being dedicated GC threads. By default, the number is set to
n-1, where n is the number of reported CPUs. Where SMT or hyperthreading is
in place, the number of reported CPUs is larger than the number of physical
CPUs. Likewise, where virtualization is in place, the number of reported CPUs
is the number of virtual CPUs assigned to the operating system. To set it to a
different number, for example 4, use -Xgcthreads4. The minimum valid value
is 1, which disables parallel operations, at the cost of performance. No
advantage is gained if you increase the number of threads to more than the
default setting.

On systems running multiple JVMs or in LPAR environments where multiple
JVMs can share the same physical CPUs, you might want to restrict the
number of GC threads used by each JVM. The restriction helps prevent the
total number of parallel operation GC threads for all JVMs exceeding the
number of physical CPUs present, when multiple JVMs perform garbage
collection at the same time.

-Xgcworkpackets
Specifies the total number of work packets available in the global collector.

-Xgcworkpackets<number>
If you do not specify a value, the collector allocates a number of packets based
on the maximum heap size.

-Xloa
This option enables the large object area (LOA).

Appendix. Appendixes 121

-Xloa
By default, allocations are made in the small object area (SOA). If there is no
room in the SOA, and an object is larger than 64KB, the object is allocated in
the LOA.

By default, the LOA is enabled for all GC policies except for subpool, where
the LOA is not available.

-Xloainitial
Specifies the initial percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloainitial<percentage>
The default value is 0.05, which is 5%.

-Xloamaximum
Specifies the maximum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloamaximum<percentage>
The default value is 0.5, which is 50%.

-Xloaminimum
Specifies the minimum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloaminimum<percentage>
The LOA does not shrink to less than this value. The default value is 0, which
is 0%.

-Xmaxe
Sets the maximum amount by which the garbage collector expands the heap.

-Xmaxe<size>
Typically, the garbage collector expands the heap when the amount of free
space falls to less than 30% (or by the amount specified using -Xminf), by the
amount required to restore the free space to 30%. The -Xmaxe option limits the
expansion to the specified value; for example -Xmaxe10M limits the expansion to
10 MB. By default, there is no maximum expansion size.

-Xmaxf
Specifies the maximum percentage of heap that must be free after a garbage
collection.

-Xmaxf<percentage>
If the free space exceeds this amount, the JVM tries to shrink the heap. The
default value is 0.6 (60%).

-Xmaxt
Specifies the maximum percentage of time to be spent in Garbage Collection.

-Xmaxt<percentage>
If the percentage of time exceeds this value, the JVM tries to expand the heap.
The default value is 13%.

-Xmca
Sets the expansion step for the memory allocated to store the RAM portion of
loaded classes.

-Xmca<size>
Each time more memory is required to store classes in RAM, the allocated

122 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

memory is increased by this amount. By default, the expansion step is 32 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmcrs
Sets an initial size for an area in memory that is reserved for compressed
references within the lowest 4 GB memory area.

Native memory OutOfMemoryError exceptions might occur when using
compressed references if the lowest 4 GB of address space becomes full,
particularly when loading classes, starting threads, or using monitors. This option
secures space for any native classes, monitors, and threads that are used by
compressed references.

-Xmcrs<mem_size>
Where <mem_size> is the initial size. You can use the -verbose:sizes option to
find out the value that is being used by the VM. If you are not using
compressed references and this option is set, the option is ignored and the
output of -verbose:sizes shows -Xmcrs0.

The following option sets an initial size of 200 MB for the memory area:
-Xmcrs200M

-Xmco
Sets the expansion step for the memory allocated to store the ROM portion of
loaded classes.

-Xmco<size>
Each time more memory is required to store classes in ROM, the allocated
memory is increased by this amount. By default, the expansion step is 128 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmine
Sets the minimum amount by which the Garbage Collector expands the heap.

-Xmine<size>
Typically, the garbage collector expands the heap by the amount required to
restore the free space to 30% (or the amount specified using -Xminf). The
-Xmine option sets the expansion to be at least the specified value; for example,
-Xmine50M sets the expansion size to a minimum of 50 MB. By default, the
minimum expansion size is 1 MB.

-Xminf
Specifies the minimum percentage of heap to remain free after a garbage collection.

-Xminf<percentage>
If the free space falls to less than this amount, the JVM attempts to expand the
heap. The default value is 30%.

-Xmint
Specifies the minimum percentage of time to spend in Garbage Collection.

Appendix. Appendixes 123

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

-Xmint<percentage>
If the percentage of time drops to less than this value, the JVM tries to shrink
the heap. The default value is 5%.

-Xmn
Sets the initial and maximum size of the new area to the specified value when
using -Xgcpolicy:gencon.

-Xmn<size>
Equivalent to setting both -Xmns and -Xmnx. If you set either -Xmns or -Xmnx,
you cannot set -Xmn. If you try to set -Xmn with either -Xmns or -Xmnx, the VM
does not start, returning an error. By default, -Xmn is not set. If the scavenger is
disabled, this option is ignored.

-Xmns
Sets the initial size of the new area to the specified value when using
-Xgcpolicy:gencon.

-Xmns<size>
By default, this option is set to 25% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmnx
Sets the maximum size of the new area to the specified value when using
-Xgcpolicy:gencon.

-Xmnx<size>
By default, this option is set to 25% of the value of the -Xmx option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmo
Sets the initial and maximum size of the old (tenured) heap to the specified value
when using -Xgcpolicy:gencon.

-Xmo<size>
Equivalent to setting both -Xmos and -Xmox. If you set either -Xmos or -Xmox,
you cannot set -Xmo. If you try to set -Xmo with either -Xmos or -Xmox, the VM
does not start, returning an error. By default, -Xmo is not set.

-Xmoi
Sets the amount the Java heap is incremented when using -Xgcpolicy:gencon.

-Xmoi<size>
If set to zero, no expansion is allowed. By default, the increment size is
calculated on the expansion size, set by -Xmine and -Xminf.

-Xmos
Sets the initial size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmos<size>
By default, this option is set to 75% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

124 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Xmox
Sets the maximum size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmox<size>
By default, this option is set to the same value as the -Xmx option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

-Xmr
Sets the size of the Garbage Collection "remembered set".

-Xmr<size>
The Garbage Collection "remembered set" is a list of objects in the old
(tenured) heap that have references to objects in the new area. By default, this
option is set to 16 K.

-Xmrx
Sets the remembered maximum size setting.

-Xmrx<size>
Sets the remembered maximum size setting.

-Xms
Sets the initial Java heap size.

-Xmssize
size can be specified in megabytes (m) or gigabytes (g). For example: -Xms2g
sets an initial Java heap size of 2GB. The minimum size is 1 MB.

You can also use the -Xmo option.

If the scavenger is enabled, -Xms >= -Xmn + -Xmo.

If the scavenger is disabled, -Xms >= -Xmo.

Note: The -Xmo option is not supported by the balanced garbage collection policy.

-Xmx
Sets the maximum memory size for the application (-Xmx >= -Xms).

-Xmxsize
size can be specified in megabytes (m) or gigabytes (g). For example: -Xmx2g
sets a maximum heap size of 2GB.

For information about default values, see “Default settings for the JVM” on
page 128.

If you are allocating the Java heap with large pages, read the information provided
for the “-Xlp” on page 104 option.

Examples of the use of -Xms and -Xmx:

-Xms2m -Xmx64m
Heap starts at 2 MB and grows to a maximum of 64 MB.

-Xms100m -Xmx100m
Heap starts at 100 MB and never grows.

-Xms20m -Xmx1024m
Heap starts at 20 MB and grows to a maximum of 1 GB.

Appendix. Appendixes 125

-Xms50m
Heap starts at 50 MB and grows to the default maximum.

-Xmx256m
Heap starts at default initial value and grows to a maximum of 256 MB.

If you exceed the limit set by the -Xmx option, the JVM generates an
OutofMemoryError.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
technology classes that are no longer being used by the JVM. The default
behavior is as defined by -Xclassgc. Enabling this option is not recommended
except under the direction of the IBM support team. The reason is the option
can cause unlimited native memory growth, leading to out-of-memory errors.

-Xnocompactexplicitgc
Disables compaction on System.gc() calls.

-Xnocompactexplicitgc
Compaction takes place on global garbage collections if you specify
-Xcompactgc or if compaction triggers are met. By default, compaction is
enabled on calls to System.gc().

-Xnocompactgc
Disables compaction on all garbage collections (system or global).

-Xnocompactgc
By default, compaction is enabled.

-Xnoloa
Prevents allocation of a large object area; all objects are allocated in the SOA.

-Xnoloa
See also -Xloa.

-Xnopartialcompactgc
Disables incremental compaction.

-Xnopartialcompactgc
See also -Xpartialcompactgc.

-Xpartialcompactgc
Enables incremental compaction.

-Xpartialcompactgc
See also -Xnopartialcompactgc. By default, this option is not set, so all
compactions are full.

-Xsoftmx
This option sets a "soft" maximum limit for the initial size of the Java heap.

-Xsoftmx<size>(AIX only)
Use the -Xmx option to set a "hard" limit for the maximum size of the heap. By
default, -Xsoftmx is set to the same value as -Xmx. The value of -Xms must be
less than, or equal to, the value of -Xsoftmx. See the introduction to this topic
for more information about specifying <size> parameters.

126 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

You can set this option on the command line, then modify it at run time by
using the MemoryMXBean.setMaxHeapSize() method in the
com.ibm.lang.management API. By using this API, Java applications can
dynamically monitor and adjust the heap size as required. This function can be
useful in virtualized or cloud environments, for example, where the available
memory might change dynamically to meet business needs. When you use the
API, you must specify the value in bytes, such as 2147483648 instead of 2g.

For example, you might set the initial heap size to 1 GB and the maximum
heap size to 8 GB. You might set a smaller value, such as 2 GB, for -Xsoftmx,
to limit the heap size that is used initially:
–Xms1g –Xsoftmx2g –Xmx8g

You can then use the com.ibm.lang.management API from within a Java
application to increase the -Xsoftmx value during run time, as load increases.
This change allows the application to use more memory than you specified
initially.

-Xsoftrefthreshold
Sets the value used by the garbage collector to determine the number of garbage
collections after which a soft reference is cleared if its referent has not been
marked.

-Xsoftrefthreshold<number>
The default is 32, meaning that the soft reference is cleared after 32 *
(percentage of free heap space) garbage collection cycles where its referent was
not marked. For example, if -Xsoftrefthreshold is set to 32, and the heap is
50% free, soft references are cleared after 16 garbage collection cycles.

-Xtgc
Provides garbage collection tracing options.

-Xtgc:<arguments>
<arguments> is a comma-separated list containing one or more of the following
arguments:

backtrace
Before a garbage collection, a single line is printed containing the name of
the master thread for garbage collection, as well as the value of the
osThread slot in the J9VMThread structure.

compaction
Prints extra information showing the relative time spent by threads in the
“move” and “fixup” phases of compaction

concurrent
Prints extra information showing the activity of the concurrent mark
background thread

dump
Prints a line of output for every free chunk of memory in the system,
including "dark matter" (free chunks that are not on the free list for some
reason, typically because they are too small). Each line contains the base
address and the size in bytes of the chunk. If the chunk is followed in the
heap by an object, the size and class name of the object is also printed.
This argument has a similar effect to the terse argument.

freeList
Before a garbage collection, prints information about the free list and
allocation statistics since the last garbage collection. Prints the number of

Appendix. Appendixes 127

items on the free list, including "deferred" entries (with the scavenger, the
unused space is a deferred free list entry). For TLH and non-TLH
allocations, prints the total number of allocations, the average allocation
size, and the total number of bytes discarded during allocation. For
non-TLH allocations, also included is the average number of entries that
were searched before a sufficiently large entry was found.

parallel
Produces statistics on the activity of the parallel threads during the mark
and sweep phases of a global garbage collection.

references
Prints extra information every time that a reference object is enqueued for
finalization, showing the reference type, reference address, and referent
address.

scavenger
Prints extra information after each scavenger collection. A histogram is
produced showing the number of instances of each class, and their relative
ages, present in the survivor space. The information is obtained by
performing a linear walk-through of the space.

terse
Dumps the contents of the entire heap before and after a garbage
collection. For each object or free chunk in the heap, a line of trace output
is produced. Each line contains the base address, "a" if it is an allocated
object, and "f" if it is a free chunk, the size of the chunk in bytes, and, if it
is an object, its class name.

-Xverbosegclog
Causes -verbose:gc output to be written to a specified file.

-Xverbosegclog[:<file>[,<X>,<Y>]]
If the file cannot be found, -verbose:gc tries to create the file, and then
continues as normal if it is successful. If it cannot create the file (for example, if
an invalid filename is passed into the command), it redirects the output to
stderr.

If you specify <X> and <Y> the -verbose:gc output is redirected to X files,
each containing Y GC cycles.

The dump agent tokens can be used in the filename. See Dump agent tokens
for more information. If you do not specify <file>, verbosegc.%Y%m%d.%H%M%S.
%pid.txt is used.

By default, no verbose GC logging occurs.

Default settings for the JVM
This appendix shows the default settings that the JVM uses. These settings affect
how the JVM operates if you do not apply any changes to its environment. The
tables show the JVM operation and the default setting.

These tables are a quick reference to the state of the JVM when it is first installed.
The last column shows how the default setting can be changed:

c The setting is controlled by a command-line parameter only.

e The setting is controlled by an environment variable only.

128 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

ec The setting is controlled by a command-line parameter or an environment
variable. The command-line parameter always takes precedence.

JVM setting Default Setting
affected by

Javadump Enabled ec

Heapdump Disabled ec

System dump Enabled ec

Snap traces Enabled ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformance checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signaling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Default locale None None None N/A None e

Time to wait before starting
plug-in

N/A N/A Zero N/A N/A e

Temporary directory /tmp /tmp /tmp c:\temp /tmp e

Plug-in redirection None None None N/A None e

IM switching Disabled Disabled Disabled N/A Disabled e

IM modifiers Disabled Disabled Disabled N/A Disabled e

Thread model N/A N/A N/A N/A Native e

Initial stack size for Java Threads
32-bit. Use: -Xiss<size>

2 KB 2 KB 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 32-bit. Use: -Xss<size>

256 KB 256 KB 256 KB 256 KB 256 KB c

Appendix. Appendixes 129

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Stack size for OS Threads 32-bit.
Use -Xmso<size>

256 KB 256 KB 256 KB 32 KB 256 KB c

Initial stack size for Java Threads
64-bit. Use: -Xiss<size>

2 KB N/A 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 64-bit. Use: -Xss<size>

512 KB N/A 512 KB 512 KB 512 KB c

Stack size for OS Threads 64-bit.
Use -Xmso<size>

256 KB N/A 256 KB 256 KB 256 KB c

Initial heap size. Use -Xms<size> 4 MB 4 MB 4 MB 4 MB 4 MB c

Maximum Java heap size. Use
-Xmx<size>

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

2 GB Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

Half the
real
memory
with a
minimum
of 16 MB
and a
maximum
of 2 GB

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

c

“Available memory” is defined as being the smallest of two values:
v The real or “physical” memory.
v The RLIMIT_AS value.

Known issues and limitations
Known issues or limitations that you might encounter in specific system
environments, or configurations.

CUPS support

The release does not support printing using the CUPS interface.

JDI problem with AIX 5.3

On AIX 5.3, if a class is run using JDI, either directly or through JDB, the class
does not return to the starting class.

JConsole monitoring tool Local tab

In the IBM JConsole tool, the Local tab, which allows you to connect to other
Virtual Machines on the same system, is not available. Also, the corresponding
command line pid option is not supported. Instead, use the Remote tab in
JConsole to connect to the Virtual Machine that you want to monitor. Alternatively,
use the connection command-line option, specifying a host of localhost and a
port number. When you start the application that you want to monitor, set these
command-line options:

-Dcom.sun.management.jmxremote.port=<value>
Specifies the port the management agent listens on.

130 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

-Dcom.sun.management.jmxremote.authenticate=false
Disables authentication unless you have created a user name file.

-Dcom.sun.management.jmxremote.ssl=false
Disables SSL encryption.

Incorrect stack traces when loading new classes after an
Exception is caught

If new classes are loaded after an Exception has been caught, the stack trace
contained in the Exception might become incorrect. The stack trace becomes
incorrect if classes in the stack trace are unloaded, and new classes are loaded into
their memory segments.

Exception when starting GUI applications, for example the
WebSphere Application Server installer, on AIX 6.1

If you start a GUI application, for example the WebSphere Application Server
installer, on AIX 6.1, the following exception might be thrown:
java.lang.UnsatisfiedLinkError: awt (An exception was pending after running
JNI_OnLoad)
at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:992)
at java.lang.ClassLoader.loadLibraryWithClassLoader(ClassLoader.java:961)
at java.lang.System.loadLibrary(System.java:465)
at sun.security.action.LoadLibraryAction.run(LoadLibraryAction.java:69)
at java.security.AccessController.doPrivileged(AccessController.java:202)
at java.awt.Toolkit.loadLibraries(Toolkit.java:1606)
at java.awt.Toolkit.<clinit>(Toolkit.java:1628)
at java.lang.J9VMInternals.initializeImpl(Native Method)
at java.lang.J9VMInternals.initialize(J9VMInternals.java:198)
at java.awt.Color.<clinint>(Color.java:275)
at java.lang.J9VMInternals.initializeImpl(Native Method)
at java.lang.J9VMInternals.initialize(J9VMInternals.java:198)
at javax.swing.plaf.basic.BasicLookAndFeel.loadSystemColors(BasicLookAndFeel.
java:412)
at com.sun.java.swing.plaf.motif.MotifLookAndFeel.initSystemColorDefaults
(MotifLookAndFeel.java:112)
at javax.swing.plaf.basic.BasicLookAndFeel.getDefaults(BasicLookAndFeel.java:141)
at javax.swing.UIManager.setLookAndFeel(UIManager.java:537)
at javax.swing.UIManager.setLookAndFeel(UIManager.java:581)
at com.installshield.wizard.swing.SwingWizardUI.switchToSystemLAF(SwingWizardUI.
java:26)
at com.installshield.wizard.swing.SwingWizardUI.initialize(SwingWizardUI.java:
216)
at com.installshield.wizard.StandardWizardListener.wizardInitializing
(StandardWizardListener.java:25)
at com.installshield.wizard.Wizard$WizardListenerInitializer.run(Wizard.java:
1619)
at java.lang.Thread.run(Thread.java:735)

To prevent this exception, install interim fix IZ16878 from IBM Support.

Exception when starting applications on AIX 6.1

If you start an application on AIX 6.1, one of the following exceptions might be
thrown:
java.lang.UnsatisfiedLinkError: awt (An exception was pending after running
JNI_OnLoad)

at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:992)
... Lines removed for readability ...

Appendix. Appendixes 131

java.lang.UnsatisfiedLinkError: jsetdom (Symbol resolution failed for /usr/lib/
libperfstat.a(shr_64.o))

at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:992)
... Lines removed for readability ...

To prevent this exception, install interim fix IZ16878 for AIX from IBM Support.

Web Start and Java technology 1.3 applications

The release version of Web Start does not support launching Java technology 1.3
applications.

Creating a JVM using JNI

Native programs cannot create a VM with JNI_VERSION_1_1(0x00010001)
interfaces. You cannot call JNI_CreateJavaVM() and pass it a version of
JNI_VERSION_1_1(0x00010001). The versions that can be passed are:
v JNI_VERSION_1_2(0x00010002)
v JNI_VERSION_1_4(0x00010004)

The VM created is determined by the Java technology libraries present (that is,
1.2.2, 1.3.x, 1.4.x, 5.x, 6.x), not the one that is implied by the JNI interface version
passed.

The interface version does not affect any area of VM behavior other than the
functions available to native code.

XIM and the Java Plug-in

AIX 5.3 only:

For Japanese, Chinese, and Korean language users, you cannot use XIM to enter
your own characters into text components on a Java technology applet in a Web
browser. To work around this situation, specify the -Dsun.awt.noxembed=true
system parameter to disable XEmbed. You can set this option by using the control
panel:
1. Open the Java Plug-in control panel and go to the Java tab.
2. Click the View button in the Java Applet Runtime Settings.
3. Enter -Dsun.awt.noxembed=true in the Java Runtime Parameters and click OK.
4. Click Apply.
5. Start a browser.

This limitation is resolved in APAR IY77834 (AIX5.3).

Printing

If you have difficulty with print operations, try increasing the size of the default
file system that is used for print spooling to be larger than the printed PostScript
file size.

Font quality in AWT

Text rendering for Java AWT TextField and TextArea components is performed by
the AIX rasterizer for X/Motif text widgets. Currently, you might experience text
dropouts at small font sizes for some fonts. To avoid the problem, use a font size

132 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

that is greater than 12 points for AWT TextField and TextArea components.

CapsLock in Chinese and Japanese locales

Chinese and Japanese locales only:

The CapsLock key does not work properly. On Chinese locales, you cannot enter
uppercase characters using the keyboard.

Java Desktop API

The Java Desktop API might not work because one or more GNOME libraries are
not available.

NullPointerException with the GTK Look and Feel

DBCS environments only:

If your application fails with a NullPointerException using the GTK Look and Feel,
unset the GNOME_DESKTOP_SESSION_ID environment variable.

Switching input methods

You must close the candidate window and commit pre-edited strings before you
switch the Input Method (IM) using the IM selection menu. If you open the IM
selection menu without either closing the candidate window or committing a
pre-edited string, cancel the menu, close the candidate window, and commit the
pre-edited string, then try to switch the IM again.

Displaying DBCS characters in a JFrame

DBCS characters might not display correctly in the title of a JFrame. To avoid this
problem, set the language in the terminal login screen instead of in a prompt after
you have logged in.

Unicode Shift_JIS code page alias

Japanese users only:

The Unicode code page alias “\u30b7\u30d5\u30c8\u7b26\u53f7\u5316\u8868\
u73fe” for Shift_JIS has been removed. If you use this code page in your
applications, replace it with Shift_JIS.

-Xshareclasses:<options>

Shared classes cache and control files are not compatible between Version 6 SR 4
and previous releases.

Java Kernel installation

The kernel aims to reduce the startup time imposed by an application when it
finds that the installed release needs an update. When this situation occurs, the
kernel automatically downloads only the components that are needed directly from
the Oracle Web site. Automated download is currently not possible with the IBM
implementation of the Oracle update.

Appendix. Appendixes 133

Java Deployment Toolkit

The toolkit implements the JavaScript DeployJava.js, which can be used to
automatically generate any HTML needed to deploy applets and Java Web Start
applications. However, the automatic generation is not possible with this release,
because the process involves downloading and running the specific release from a
public site, using public functions.

Next-Generation Java Plug-In Technology

There are some known limitations relating to Next-Generation Java Plug-In
Technology:
1. The Next-Generation plug-ins are not available for AIX systems because the

prerequisite Firefox 3 and Firefox 3.5 browsers are not available on this
platform.

Expired GTE Cybertrust Certificate

The release contains an expired GTE CyberTrust Certificate in the CACERTS file for
compatibility reasons. The CACERTS file is provided as a default truststore. Some
common public certificates are provided as a convenience.

If no applications require the certificate, you can leave it in the CACERTS file.
Alternatively, the certificate can be deleted. If applications do require the certificate,
modify them to use the newer GTE CyberTrust Global root certificate that expires
in 2018.

This certificate might be removed for later versions of the release.

Using Web Start to launch a JNLP application

When using Web Start to launch a Java Network Launching Protocol (JNLP)
application that requires an older version of Java technology, you might see an
error containing the following message:
java.lang.NoClassDefFoundError: com/sun/deploy/util/BlackList

This results from a check controlled by the deployment configuration property
deployment.security.blacklist.check The property is enabled using the Enable
blacklist revocation check option in the Java Control Panel.

To work around the problem:
1. Launch the Java Control Panel.
2. Select Advanced tab > Security.
3. Clear the Enable blacklist revocation check option.

Using -Xshareclasses:destroy during JVM startup

When running the command java -Xshareclasses:destroy on a shared cache that
is being used by a second JVM during startup, you might have the following
issues:
v The second JVM fails.
v The shared cache is deleted.

134 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

Change in default page size increases memory usage

From Version 6 SR 7 on IBM POWER, the heap is allocated with 64K pages by
default, instead of 4K pages. This change improves application throughput and
startup performance. However, the change might cause a slight increase in the
amount of memory used by your application. If memory usage is critical to your
application, follow both these steps to revert to the behavior of Version 6 SR 6:
1. Set the environment variable

LDR_CNTRL=TEXTPSIZE=4K@DATAPSIZE=4K@STACKPSIZE=4K. For more information
about this environment variable, see “Working with the LDR_CNTRL environment
variable” on page 21.

2. Use the Java technology option -Xlp4K. For more information about the -Xlp
option, see “JVM command-line options” on page 98.

The change introduced in Version 6 SR 7 has no affect if you are already using the
-Xlp option to allocate the heap with large pages.

Problems accessing archive files created using java.util.Zip*

The java.util.Zip* files can create archive files that are larger than 4 GB.
However, some third-party compression tools have file size limitations, and cannot
access files larger than 4 GB.

Java technology applets fail with a network security exception

After installing Version 6 Service Refresh 9, some applets might fail with a network
security exception during name resolution. The problem is caused by a fix for a
security vulnerability in the Next Generation Java plug-in technology. The problem
affects applets that are embedded in web pages and that contain JavaScript
concerned with network security permissions. The applet fails if the name service
used to resolve the website host name does not return a name that can be
converted by reverse address lookup back into the original web page URL host
name.

To avoid this problem, update your host settings to enable authentication with
IPv4 and IPv6 name service mappings, as follows:

The IPv4 general form is:
aaa.bbb.ccc.ddd
fully.qualified.domain.name.auth.ddd.ccc.bbb.aaa.in-addr.arpa

Add the fully qualified host name myhost.mysite.com before other mappings in
your TCP/IP hosts file. For example:
IPv4 host entries
#10.11.12.13 myhost loghost
10.11.12.13 myhost.mysite.com myhost loghost

Use the equivalent form for IPv6 addresses.

If security is not important, you can use a crossdomain.xml file to grant permission
to connect to the site from any applet. In this case, changes to name service
mappings are not required.

Appendix. Appendixes 135

Chinese characters stored as ? in an Oracle database

When you configure an Oracle database to use the ZHS16GBK character set, some
Chinese characters or symbols that are encoded with the GBK character set are
incorrectly stored as a question mark (?). This problem is caused by an
incompatibility of the GBK undefined code range Unicode mapping between the
Oracle ZHS16GBK character set and the IBM GBK converter. To fix this problem,
use a new code page, MS936A, by including the following system property when
you start the JVM:
-Dfile.encoding=MS936A

For IBM WebSphere Application Server users, this problem might occur when web
applications that use JDBC configure Oracle as the WebSphere Application Server
data source. To fix this problem, use a new code page, MS936A, as follows:
1. Use the following system property when you start the JVM:

-Dfile.encoding=MS936A

2. Add the following lines to the WAS_HOME/properties/converter.properties file,
where WAS_HOME is your WebSphere Application Server installation directory.
GBK=MS936A
GB2312=MS936A

Issues with the XL TXE-J XSLT compiler

A low split limit might cause compilation errors.

Avoid calling Java technology extension functions that have side effects because
the order of execution is not guaranteed.

Versions of Ant before 1.7.0 do not work with the XL TXE-J compiler. Instead, use
the XSLT4J interpreter by running the release with the following system property:
v -Djavax.xml.transform.TransformerFactory=

org.apache.xalan.processor.TransformerFactoryImpl.

Reduced performance on multi-threaded applications

This release has increased use of AIX system pthread_mutexes. You might need to
tune some AIX thread environment variables for better performance of
multithreaded applications.

If your application shows low throughput and low processor utilization, try using
the following environment variables:
v SPINLOOPTIME=128

v YIELDLOOPTIME=32

v AIXTHREAD_MUTEX_FAST=ON

These parameters are described in the AIX 6.1 Information Center topic on
Performance Management and tuning, available at: http://
publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp.

Large page request fails

There is no error message issued when the JVM is unable to honor the -Xlp
request.

136 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|

|
|

http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.base/performance.htm?lang=en
http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.base/performance.htm?lang=en

There are a number of reasons why the JVM cannot honor a large page request.
For example, there might be insufficient large pages available on the system at the
time of the request. To check whether the -Xlp request was honored, you can
review the output from -verbose:gc. Look for the attributes requestedPageSize
and pageSize in the -verbose:gc log file. The attribute requestedPageSize contains
the value specified by -Xlp. The attribute pageSize is the actual page size used by
the JVM.

UDP datagram socket failure

By default on AIX, the system-wide udp_sendspace setting is 9216 bytes. If you are
trying to send buffer data with a length greater than 9216 bytes, a UDP Datagram
socket failure occurs. You can increase the size of the buffer by using the
setSendBufferSize() function available in
DatagramSocket.socket.setSendBufferSize(SEND_SIZE);.

Unexpected CertificateException

Version 6 Service Refresh 13 fix pack 1 and later releases contain a security
enhancement to correctly validate certificates on jar files of applications. After
upgrading, a CertificateException occurs for any applications in one of the
following scenarios:
v The application jar is not properly signed.
v The application jar has incorrect certificates.
v A certificate in the certificate chain is revoked.

To avoid these exceptions, make sure that your application jars are signed with
valid certificates before you upgrade from an earlier release. This issue relates to
APAR IV38456.

Unexpected application errors with RMI

If your application uses RMI and you experience unexpected errors after updating
to Version 6 Service Refresh 13 fix pack 2, or later releases, the problem might be
associated with a change to the default value of the RMI property
java.rmi.server.useCodebaseOnly. For more information, see http://
docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html.

Unexpected XSLT error on extension elements or extension
functions when security is enabled

From Version 6 Service Refresh 14, any attempt to use extension elements or
extension functions when security is enabled, results in a
javax.xml.transform.TransformerException error during XSLT processing. This
change in behavior is introduced to enhance security.

The following XSLT message is generated when extension functions are used: Use
of the extension function '<method name>' is not allowed when security is
enabled. To override this, set the
com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

The following XSLT message is generated when extension elements are used: Use
of the extension element '<element name>' is not allowed when security is
enabled. To override this, set the

Appendix. Appendixes 137

|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html

com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

To allow extensions when security is enabled, set the
com.ibm.xtq.processor.overrideSecureProcessing system property to true. For
more information about this system property, see
“-Dcom.ibm.xtq.processor.overrideSecureProcessing” on page 90.

Support for virtualization software
This release is tested with a number of virtualized server products.

This release has been tested with the following virtualization software:

Table 7. Virtualization software tested

Vendor Architecture Server virtualization Version

IBM z Systems PR/SM™ z13, z10™, z11, z196,
zEC12

IBM z Systems z/VM® 6.1, 6.2

IBM z Systems KVM for IBM z
Systems

1.1.0

IBM POWER PowerVM®

Hypervisor
Power 6, Power 7,
Power 8

VMware x86-64 VMware ESX and
ESXi Server

4.1, 5.0

Red Hat x86-64 Red Hat Enterprise
Virtualization
(RHEV)

2.1, 3.0

SUSE x86-64 SUSE KVM SLES 11

Microsoft x86-64 Hyper-V Server 2012

Docker, Inc x86-64 Docker V1.6 or later (see
note)

Note: IBM supports all versions of the SDK that run in Docker containers,
provided that the Docker images are based on supported operating systems. To
find out which operating systems are supported for the IBM SDK, see
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.user.lnx.60/user/supported_env.html .

138 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

|
|

|
|
|
|

|||
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.lnx.60/user/supported_env.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.lnx.60/user/supported_env.html

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2003, 2016 139

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

140 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 141

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);
and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

142 IBM SDK, Java Technology Edition, Version 6: AIX User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Notices 143

IBM®

Printed in USA

	Contents
	Preface
	Chapter 1. Overview
	Version compatibility
	Migrating from earlier IBM SDK or JREs
	Supported environments
	Additional information for AIX

	Chapter 2. Contents of the SDK and Runtime Environment
	Contents of the Runtime Environment
	Contents of the SDK

	Chapter 3. Installing and configuring the SDK and Runtime Environment
	Installing from an InstallAnywhere package
	Completing an attended installation
	Completing an unattended installation
	Interrupted installation
	Known issues and limitations

	Relocating an installp package
	Upgrading the SDK
	Verification
	Setting the path
	Setting the class path
	Updating your SDK or JRE for Daylight Saving Time changes

	Chapter 4. Running Java applications
	The java and javaw commands
	Obtaining version information
	Specifying Java options and system properties
	Standard options
	Globalization of the java command

	Working with the LIBPATH environment variable
	Working with the LDR_CNTRL environment variable
	The Just-In-Time (JIT) compiler
	Disabling the JIT
	Enabling the JIT
	Determining whether the JIT is enabled

	Specifying a garbage collection policy
	Garbage collection options
	More effective heap usage using compressed references
	Pause time
	Pause time reduction
	Environments with very full heaps

	Dynamic Logical Partitioning (DLPAR) support
	Live application mobility on AIX WPAR
	Using the IPv6 extensions
	Enhanced BiDirectional support
	Euro symbol support
	Using Indian and Thai input methods
	Scaling support
	System resource limits and the ulimit command
	AIX Stack Execution Disable

	Chapter 5. Developing Java applications
	Using XML
	Migrating to the XL-TXE-J
	Securing Java API for XML processing (JAXP) against malformed input
	XML reference information
	XL XP-J reference information
	XL TXE-J reference information
	Using an older version of Xerces or Xalan

	Debugging Java applications
	Java Debugger (JDB)
	Selective debugging

	Determining whether your application is running on a 32-bit or 64-bit JVM
	Determining which JVM version your application is running on
	How the JVM processes signals
	Signals used by the JVM
	Linking a native code driver to the signal-chaining library

	Writing JNI applications
	Supported compilers
	JNI compatibility
	JNI runtime linking
	Example of using AIX shared libraries

	Support for thread-level recovery of blocked connectors
	Configuring large page memory allocation
	CORBA support
	System properties for tracing the ORB
	System properties for tuning the ORB
	Java security permissions for the ORB
	ORB implementation classes

	RMI over IIOP
	Implementing the Connection Handler Pool for RMI
	Enhanced BigDecimal
	AIX native threads
	JNDI
	Support for XToolkit
	Support for the Java Attach API

	Chapter 6. Plug-in, Applet Viewer and Web Start
	Using the Java plug-in
	Supported browsers
	Installing the Java plug-in
	Changing the properties of the Java Plug-in
	Common Document Object Model (DOM) support
	Using DBCS parameters

	Working with applets
	Running and debugging applets with the Applet Viewer
	Java Applet Viewer and the classpath

	Using Web Start
	Running Web Start
	WebStart Secure Static Versioning

	Distributing Java applications

	Chapter 7. Class data sharing between JVMs
	Overview of class data sharing
	Class data sharing command-line options
	Creating, populating, monitoring, and deleting a cache
	Performance and memory consumption
	Considerations and limitations of using class data sharing
	Cache size limits
	JVMTI RetransformClasses() is unsupported
	Runtime bytecode modification
	Operating system limitations
	Using SharedClassPermission

	Adapting custom class loaders to share classes

	Chapter 8. Service and support for independent software vendors
	Chapter 9. Accessibility
	Keyboard traversal of JComboBox components in Swing
	Web Start accessibility

	Appendix. Appendixes
	Command-line options
	Specifying command-line options
	General command-line options
	System property command-line options
	-Dcom.ibm.CORBA.CommTrace
	-Dcom.ibm.CORBA.Debug
	-Dcom.ibm.CORBA.Debug.Output
	-Dcom.ibm.dbgmalloc
	-Dcom.ibm.jsse2.renegotiate
	-Dcom.ibm.lang.management.verbose
	-Dcom.ibm.IgnoreMalformedInput
	-Dcom.ibm.streams.CloseFDWithStream
	-Dcom.ibm.tools.attach.enable
	-Dcom.ibm.UseCLDR16
	-Dcom.ibm.xtq.processor.overrideSecureProcessing
	-Dcom.ibm.zipfile.closeinputstreams
	-Dfile.encoding
	-Dibm.disableAltProcessor
	-Dibm.jvm.bootclasspath
	-Dibm.stream.nio
	-Djava.compiler
	-Djava.util.Arrays.useLegacyMergeSort
	-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
	-Djdk.map.althashing.threshold
	-Djdk.xml.entityExpansionLimit
	-Djdk.xml.maxGeneralEntitySizeLimit
	-Djdk.xml.maxOccur
	-Djdk.xml.maxParameterEntitySizeLimit
	-Djdk.xml.maxXMLNameLimit
	-Djdk.xml.resolveExternalEntities
	-Djdk.xml.totalEntitySizeLimit
	-Dsun.awt.keepWorkingSetOnMinimize
	-Dsun.net.client.defaultConnectTimeout
	-Dsun.net.client.defaultReadTimeout
	-Dsun.nio.MaxDirectMemorySize
	-Dsun.reflect.inflationThreshold
	-Dsun.rmi.transport.tcp.connectionPool
	-Dswing.useSystemFontSettings

	JVM command-line options
	-X
	-Xaggressive
	-Xargencoding
	-Xbootclasspath
	-Xcheck
	-Xclassgc
	-Xcompressedrefs
	-Xdbg
	-Xdiagnosticscollector
	-Xdisablejavadump
	-Xdump
	-Xenableexplicitgc
	-Xfastresolve
	-Xfuture
	-Xiss
	-Xjarversion
	-Xjni
	-Xlinenumbers
	-XlockReservation
	-Xlog
	-Xlp
	-Xmso
	-Xnoagent
	-Xnoclassgc
	-Xnocompressedrefs
	-Xnolinenumbers
	-Xnosigcatch
	-Xnosigchain
	-Xoptionsfile
	-Xoss
	-Xrdbginfo
	-Xrs
	-Xrun
	-Xscmx
	-XselectiveDebug
	-Xshareclasses
	-Xsigcatch
	-Xsigchain
	-Xss
	-Xssi
	-Xthr
	-XtlhPrefetch
	-Xtrace
	-Xtune:virtualized
	-Xverify
	-Xzero

	JVM -XX command-line options
	-XXallowvmshutdown
	-XX:codecachetotal
	-XX:MaxDirectMemorySize
	-XX:-StackTraceInThrowable
	-XX:[+|-]UseCompressedOops (64-bit only)

	JIT and AOT command-line options
	-Xaot
	-Xcodecache
	-Xcodecachetotal
	-Xint
	-Xjit
	-Xnoaot
	-Xnojit
	-Xquickstart
	-XsamplingExpirationTime
	-Xscmaxaot
	-Xscminaot

	Garbage Collector command-line options
	-Xalwaysclassgc
	-Xclassgc
	-Xcompactexplicitgc
	-Xcompactgc
	-Xconcurrentbackground
	-Xconcurrentlevel
	-Xconcurrentslack
	-Xconmeter
	-Xdisableexcessivegc
	-Xdisableexplicitgc
	-Xdisablestringconstantgc
	-Xenableexcessivegc
	-Xenablestringconstantgc
	-Xgc
	-Xgcpolicy
	-Xgcthreads
	-Xgcworkpackets
	-Xloa
	-Xloainitial
	-Xloamaximum
	-Xloaminimum
	-Xmaxe
	-Xmaxf
	-Xmaxt
	-Xmca
	-Xmcrs
	-Xmco
	-Xmine
	-Xminf
	-Xmint
	-Xmn
	-Xmns
	-Xmnx
	-Xmo
	-Xmoi
	-Xmos
	-Xmox
	-Xmr
	-Xmrx
	-Xms
	-Xmx
	-Xnoclassgc
	-Xnocompactexplicitgc
	-Xnocompactgc
	-Xnoloa
	-Xnopartialcompactgc
	-Xpartialcompactgc
	-Xsoftmx
	-Xsoftrefthreshold
	-Xtgc
	-Xverbosegclog

	Default settings for the JVM
	Known issues and limitations
	Support for virtualization software

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

